Connect with us

Published

on

A new study on a 7,100-year-old skeleton from China has revealed a “ghost” lineage that only existed in theories until now. Skeleton of the early Neolithic woman, known as Xingyi_EN, unearthed at the Xingyi archaeological site in southwestern China’s Yunnan province. Her DNA links her to a deeply divergent human population that may have contributed to the ancestry of modern Tibetans. This study also reveals a distinct Central Yunnan ancestry connected to early Austroasiatic-speaking groups. This discovery makes Yunnan as a key region to understand the ancient genetic history of East and Southeast Asia. The detailed analysis of 127 human genomes from southwestern China is published in a study in the journal Science.

According to the study, radiocarbon dating indicates Xingyi_EN lived around 7,100 years ago and isotope analysis suggests she lived as a hunter-gatherer. Genetic sequencing revealed her ancestry from a deeply diverged human lineage—now named the Basal Asian Xingyi lineage. This lineage diverged from other modern human groups over 40,000 years ago and remained isolated for thousands of years without mixing with other populations.

This “ghost” lineage does not match DNA from Neanderthals or Denisovans but appears to have later contributed to the ancestry of some modern Tibetans. Xingyi_EN represents the first physical evidence of this previously unknown population.

Yunnan’s significance as a reservoir of deep human diversity

Most of the skeletons that the researchers sampled were dated between 1,400 and 7,150 years ago and came from Yunnan province, which today has the highest ethnic and linguistic diversity in all of China.

“Ancient humans that lived in this region may be key to addressing several remaining questions on the prehistoric populations of East and Southeast Asia,” the researchers wrote in the study. Those unanswered questions include the origins of people who live on the Tibetan Plateau, as previous studies have shown that Tibetans have northern East Asian ancestry.

Continue Reading

Science

James Webb Telescope Unveils Hidden Star-Forming Regions in Sagittarius B2

Published

on

By

New JWST observations reveal the hidden star-forming activity inside Sagittarius B2, the Milky Way’s largest molecular cloud. By seeing through dense dust, astronomers can study how stars form efficiently in extreme environments. These findings help explain not only Sgr B2 but also broader mechanisms shaping galaxies.

Continue Reading

Science

JWST Delivers First-Ever Weather Report of Rogue Brown Dwarf World Glowing With Auroras

Published

on

By

Astronomers using JWST have delivered the first weather report of SIMP-0136, a rogue brown dwarf about 20 light-years away. The study revealed stable silicate clouds, auroras heating the upper atmosphere, and possible giant storm systems. Findings mark a breakthrough in studying alien weather and pave the way for mapping exoplanet climates.

Continue Reading

Science

Orionid Meteor Shower 2025: When and How to Watch Stunning Shooting Stars

Published

on

By

The Orionid meteor shower 2025 will put on a breathtaking show this October, with shooting stars streaking across the sky. Caused by Halley’s Comet debris, the event peaks on October 21–22 and rewards viewers with clear, dark skies and patience. A must-watch for astronomy lovers and casual stargazers alike.

Continue Reading

Trending