Connect with us

Published

on

The U.S.-French SWOT (Surface Water and Ocean Topography) satellite captured the leading edge of a tsunami wave that rolled through the Pacific Ocean on July 30, 2025 (11:25 a.m. local time), in the wake of a magnitude 8.8 earthquake that struck Russia’s Kamchatka Peninsula. The satellite captured the data about 70 minutes after the earthquake struck. SWOT is a designed to map oceans and freshwater on Earth. The satellite recorded data from the tsunami as it passed through the deep ocean.

About SWOT

According to NASA, The SWOT satellite was jointly developed by NASA and the French space agency CNES (Centre National d’Études Spatiales). NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter, the KaRIn radio-frequency subsystem, the satellite platform, and ground operations were provided by CNES.

These advanced technology and specialized radar helps SWOT to map the height of the ocean surface. In this case, SWOT’s measurement of the tsunami wave’s height and shape in open water showed that the leading edge of the wave was about 1.5 feet (45 centimeters) high. It also captured the wave’s profile and direction as it traveled toward coastal areas. Such detailed measurements of a tsunami at sea are unprecedented.

Better disaster forecast

The NOAA Center for Tsunami Research tested its forecast models using the new satellite data and found that including SWOT’s measurements could significantly improve forecast accuracy. NASA oceanographer Ben Hamlington noted that even a 1.5-foot tsunami in the deep ocean can amplify into a 30-foot wave at the shore and it is important to detect it early. Vasily Titov, chief scientist at NOAA’s Center for Tsunami Research, added that these observations suggest SWOT could significantly enhance operational tsunami forecasting – a capability long sought since the 2004 Sumatra disaster.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


SpaceX to Fly Italian Science Experiments to Mars on Starship in 2026



Asus Vivobook S16 Refreshed in India With Snapdragon X Series Processor: Price, Specifications

Related Stories

Continue Reading

Science

Perseid Meteor Shower 2025 to Dazzle Night Sky in August

Published

on

By

The Perseid meteor shower, one of the year’s most anticipated celestial events, will peak on the night of August 12–13, 2025. At its height, the shower can produce up to 100 meteors per hour, though the glare of an 86% waning gibbous moon will make spotting faint streaks difficult. Observers can still expect to see the brightest meteors and occasional fireballs, e…

Continue Reading

Science

Raphael Domjan Soars to 8,224 Meters in SolarStratos

Published

on

By

Raphael Domjan Soars to 8,224 Meters in SolarStratos

Raphael Domjan, Swiss Aviator, came close to reaching the distance of a world record while flying a solar Stratos plane on Sunday. He departed from Sion Airport in Southwestern Switzerland, reaching an altitude of 8224 meters; it lasted for four hours. Domjan, tagged as an eco-explorer for his aviation focus, and is known for his eco-friendly ambitions. According to him, achieving a height of more than 10,000 meters is still a dream for him to come true soon, hopefully.

Raphael Domjan Sets New SolarStratos Altitude Record

As per TechExplore, In 2010, Andre Borschberg set the record for the highest flight in a solar plane for 9,235 meters as a Swiss pilot flying the Solar Impulse. Domjan won’t just break the record of Borschberg but also intends to fly to the same altitude just like commercial jets. The challenge is as important as Solar Stratos has a boundary on the altitude that it can reach and while relying on solar power only.

The Road to 10,000 Meters: A Green Aviation Dream

Prior to this attempt, Domjan completed a practice flight on July 31, reaching an altitude of 6,589 meters, which was a record for the SolarStratos. Last Friday, he attempted a flight, but the thermals which usually aid in altitude gain were absent. He decided to turn back to conserve battery power for future attempts.

Earlier this week, conditions proved more favorable, leading to a new record altitude for the SolarStratos. As an innovation, the plane has solar panels on its 24.8-meter wings, which power its batteries. During the flight’s solar charging cycle, the plane’s batteries will automatically recharge to full. Domjan and his team are preparing for the next record attempt to make sure it will be a guaranteed success.

Asked about the 10,000 meter target, Domjan believes it is a target which will be achieved only by relentless attempts. For him, it is about the achievement, and an achievement only possible through determination and resilience on the aviations of the future as a green revolution.

Continue Reading

Science

Singapore Researchers Build Maple Seed Drone with Record 26-Minute Flight

Published

on

By

Singapore Researchers Build Maple Seed Drone with Record 26-Minute Flight

A flying robot inspired by the anatomy of a maple seed, samaras, was developed by researchers of the Singapore University of Technology and Design (SUTD). This new monocopter, besides flying much longer than other drones of its size, proves its superiority by running on a single rotor for 26 minutes. This feat is a marked achievement, proving the goals of SUTD’s associate professor Foong Shaohui, who built a 50 minute flying drone for Singapore’s 50 year anniversary. Now, the focus shifts to efficiency in smaller designs.

Nature-Inspired Design Brings Breakthrough in Small Drone Efficiency

According to Techxplore, Nature proves to be the ultimate guide for the SUTD team, as they had previously designed quadcopters with no external help. In the case of maple seeds that spin and gently fall to the ground creating lift, the team built a singular powered wing monocopter. This improvement, while simple, also greatly enhances control, efficiency, effectiveness, and reduces weight.

The collective mix of human creativity with AI enabled tools to further enhance the designs fuel origami’s makes the monocopter a success. AI enabled tools allowed the team to simulate various shapes, angles, and weight before creating the final prototype. As a result, the team had a drone that is 32 grams while retaining the ability to endure more than other drones.

From 10-Year Challenge to Record-Breaking Maple Seed Monocopter

This small monocopter could be extremely beneficial for low-cost, long-duration missions. An example mission could be to transport instruments for measuring meteorological conditions. Taking home the Sustainability Winner award at the 2024 Dyson Awards felt like a decisive victory for monocopter, underscoring its potential for environmental monitoring missions. Now refinement efforts will target a larger payload, longer endurance, and extended range, all without adding weight.

The achievement shows the ten years of steady progress, which started from the SG50 quadcopter and evolved into the SG60 monocopter. It is planned for rollout during the 60th birthday of Singapore festivities. It has been guided by advanced engineering, insights from nature and on-board AI from the team has demonstrated the practical versatility and impressive performance of compact flying robots.

Continue Reading

Trending