Connect with us

Published

on

In a first for India, Chimeric Antigen Receptor T-cell (CAR-T) therapy, a type of gene therapy for blood cancer treatment, was successfully conducted last Friday at the Bone Marrow Transplant unit at the Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Hostpital in Mumbai in collaboration with IIT Bombay. The Central government has now allocated Rs 19.15 crore to conduct first-in-human phase-I/ II clinical trials of the CAR-T cells, the Department of Biotechnology (DBT), part of the Ministry of Science and Technology, said on Thursday. The CAR-T therapy has emerged as a breakthrough in cancer treatment, and clinical trials across the globe have shown promising results in end-stage patients, particularly the ones suffering from acute lymphocytic leukemia.

Despite a proven therapeutic potential for cancer patients, this gene therapy is still not available in India. A patient’s CAR-T cell therapy costs Rs. 3-4 crore and, therefore, the challenge lies in not just developing the technology at scale but also bring the cost down. And last Friday’s success may just be the first step in that direction. The CAR-T cells were designed and manufactured at IIT Bombay’s Bioscience and Bioengineering (BSBE) department.

Subhasis Chaudhuri, the director of IIT Bombay, said: “Our scientists along with Tata Memorial Hospital have come out with the most sophisticated therapy in cancer treatment. If the trials are successful, it may save millions of lives by making the treatment available in India at an affordable cost.”

The clinical trials for the “first in India” gene therapy are being conducted by Dr. (Surg Cdr) Gaurav Narula, Professor of Paediatric Oncology and Health Sciences, and his team from TMC, Mumbai. The novel CAR-T cells that will act as drugs were manufactured by Professor Rahul Purwar, Bioscience and Bioengineering (BSBE) department, and his team at IIT Bombay. The design, development, and extensive pre-clinical testing were carried out by IIT-B as a collaborative project with Tata Memorial Center, Mumbai by the two investigators, DBT said via a press release.

The work is partly supported by Biotechnology Industry Research Assistance Council (BIRAC). The National Biopharma Mission, under DBT-BIRAC, is also supporting the TMC-IIT Bombay in the Phase I/II trial of their CAR-T product.

Besides this, the National Biopharma Mission is also supporting the development of a Lentiviral vector manufacturing facility for packaging plasmids used to transfer the modified T cell inside the body, a cGMP facility for T-cell transduction, and the expansion for CAR T-cell manufacturing to two other organisations.


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

See Solar Orbiter’s Latest Images of the Sun’s Surface and Magnetic Fields

Published

on

By

See Solar Orbiter’s Latest Images of the Sun's Surface and Magnetic Fields

The European Space Agency’s (ESA) Solar Orbiter spacecraft has delivered the most detailed images of the sun’s surface to date. These images, taken in March 2023 from a distance of approximately 74 million kilometres, were released on November 20. They provide unprecedented insights into the photosphere, the layer of the sun responsible for emitting visible light. The photos reveal the intricate and dynamic patterns of granules—plasma cells roughly 1,000 kilometres wide—formed by convection as hot plasma rises and cooler plasma sinks.

Sunspot Activity and Magnetic Fields Analysed

The images highlight sunspots as cooler, darker regions on the photosphere, where intense magnetic fields disrupt the movement of plasma. The Polarimetric and Helioseismic Imager (PHI) on board the Solar Orbiter produced detailed maps of these magnetic fields, identifying their significant concentration in sunspot regions. According to Daniel Müller, ESA Project Scientist for Solar Orbiter, these observations are essential for understanding the sun’s dynamic processes. The sunspots appear colder because magnetic forces restrict normal convection, causing a decrease in surface temperature.

New Data on Solar Rotation and Winds

A velocity map, known as a tachogram, has also been shared, illustrating the speed and direction of material movement on the sun’s surface. Blue regions represent plasma moving towards the spacecraft, while red areas show plasma moving away, revealing the sun’s rotational dynamics. Additionally, magnetic fields in sunspot regions were seen to disrupt the surface material further.

The sun’s outer atmosphere, the corona, was imaged by the spacecraft’s Extreme Ultraviolet Imager. Plasma loops protruding from the sun, visible in these images, are connected to sunspots and contribute to the solar wind. This solar wind, when reaching Earth, often results in auroral displays.

Future Missions to Study Solar Poles

The Solar Orbiter, launched in 2020 as a joint mission with NASA, aims to capture unprecedented views of the sun’s poles. These observations are scheduled for 2025, when the spacecraft’s orbit will align for a direct perspective. The recent imaging involved the assembly of 25 smaller images, a complex process now expected to accelerate for future releases.

Continue Reading

Science

Human Cell Atlas Mapping 37 Trillion Human Cells for Disease Insights

Published

on

By

Human Cell Atlas Mapping 37 Trillion Human Cells for Disease Insights

Efforts to create a comprehensive map of all human cells have taken a significant leap forward. Researchers associated with the Human Cell Atlas (HCA), a global scientific consortium, have released over 40 studies detailing critical progress in mapping the 37 trillion cells that make up the human body. These findings, published on 20 November in Nature journals, focus on cells in organs such as the lungs, skin, and brain and outline advanced computational tools for analysing vast datasets.

The project aims to profile cells from diverse populations worldwide to identify their unique functions, locations, and interactions at various stages of life. Already, data from 100 million cells sourced from over 10,000 individuals in more than 100 countries have been collected. By 2026, researchers plan to present the first draft of the atlas, with future versions expected to incorporate billions of cells.

Detailed Discoveries Across the Body

Among the recent findings is a comprehensive cellular map of the digestive system, from the oesophagus to the colon. This work, based on data from 190 individuals, uncovered a type of cell involved in inflammatory diseases like Crohn’s disease and ulcerative colitis. Professor Itai Yanai of NYU Langone Health noted that these cells likely trigger immune responses, contributing to inflammation in diseased tissues.

Other studies have shed light on early human development, including insights into skeletal formation during pregnancy and conditions like craniosynostosis. Maps comparing fetal brain development with lab-grown brain organoids also highlight the accuracy of these models, which replicate human brain activity up to the second trimester.

Implications for Medical Research

The findings have implications for drug discovery and disease understanding. Dr Aviv Regev, co-chair of the HCA, likened the work to advancements in mapping technologies, stating, “We have transitioned from basic, crude maps to something as detailed as Google Maps.” However, she acknowledged the significant work that lies ahead to complete this ambitious project.

The research has already led to groundbreaking discoveries, including the identification of a new lung cell type and insights into tissues vulnerable to COVID-19. Scientists aim to continue refining these maps, using organoids and other methods to unravel human biology and disease mechanisms.

Continue Reading

Science

Study finds Irminger Sea key to Atlantic current’s stability

Published

on

By

Study finds Irminger Sea key to Atlantic current’s stability

A new study highlights the critical role of the Irminger Sea, located off southeastern Greenland, in maintaining the strength of the Atlantic Meridional Overturning Circulation (AMOC). The AMOC, a global ocean conveyor belt, is crucial for regulating Earth’s climate, particularly in the Northern Hemisphere. According to research led by Dr Qiyun Ma, a postdoctoral researcher at the Alfred Wegener Institute for Polar and Marine Research in Germany, disruptions in this region could have far-reaching climate impacts.

Dr Ma emphasised that freshwater input into the Irminger Sea directly inhibits deep-water formation, a key process for sustaining the AMOC. This reduction in deep-water currents, caused by increasing Arctic meltwater, significantly alters atmospheric circulation and disrupts the broader ocean current system. The study underscores the urgent need for targeted monitoring of the Irminger Sea, as findings suggest its influence on the AMOC surpasses that of neighbouring regions, including the Labrador Sea and Nordic Seas.

Freshwater Flow Weakens Ocean Currents

The research simulated scenarios of increased freshwater in four regions of the North Atlantic and assessed the AMOC’s sensitivity. It was discovered that the Irminger Sea plays a unique role in regulating deep-water formation across adjacent seas, including the Labrador Sea. Freshwater input in this area also exacerbates climate extremes, such as altered precipitation patterns in North America and the Amazon Basin.

Wider Climate Implications

Findings from this study align with earlier predictions of Northern Hemisphere cooling and Arctic sea ice expansion due to a weakening AMOC. Additionally, slight warming in the Southern Hemisphere and disruptions to tropical monsoon systems were observed. Dr Ma pointed out that the location of freshwater input heavily influences these outcomes, making precise predictions more challenging.

The study, published in Science Advances on November 20, highlights the growing need for climate experts and policymakers to address AMOC vulnerabilities. Enhanced monitoring of sensitive areas like the Irminger Sea could aid in developing adaptive strategies to mitigate future climate disruptions.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Prasar Bharati Launches ‘Waves’ OTT Platform with Live TV, Regional Shows, and More



Lineman OTT Release Date: When and Where to Watch it Online?

Continue Reading

Trending