Connect with us

Published

on

Anyone considering investing in solar panels will of course expect that it will be a while before they have paid for themselves producing valuable electricity. How long it will take to reach break even depends on many factors: The initial price of the system including full installation, the longevity of the hardware components of the system itself, the price rate structure of the utility energy provider including the grid operator, taxes on both sell and buy rates, whether you opt to include battery storage, and how much the system changes the value of the building on which the it is installed. Of course you could have a situation where panels are just installed and you pay on a monthly basis without actually owning the system in which case none of the following matters, except maybe the electric vehicle bits.

A Typical Solar Installation

To be honest, the overall question of this article is in reality impossible to answer accurately for any given system, but since I’ve had my solar panels for exactly 10 years know, I can at least provide some data for you to look at. These basic data of how much electricity is generated is useful for making more precise calculations for your local pricing structure, and thus help you forecast how long a given system you are interested in would be able to pay for itself. But first, some specifications on my system:

  • 16 panels with a total peak capacity of 4 kWp (I have only come close to this output at noon on very cold and windy summer days).
  • 2 inverters capable of 2 kW throughput each (at the time this was cheaper than 1 single 4 kW inverter and would make it easier to install an extra 2 kWp had I needed it).
  • Price including all hardware, installation, and tax credit (in 2011 the labour cost was deductible in Denmark): 100,000 DKK ($16,000). A similar system price today 10 years later: 50,000 — 70,000 DKK ($8,000 — 11,000) depending on local tax credits.
  • Geographical attributes: Panels facing south at a 30 degree angle, latitude and longitude (Decimal degrees): 56.3332, 10.3826.

Why not 6 kW, which is the largest allowed grid connected system on private property in my area? Well, although it would easily fit on my roof, I simply could not afford it at the time, and up until I got an electric car it would have more capacity than I needed all things considered.

Things to consider that can have a positive impact utilizing excess energy periods when not having opted for a battery as storage:

  • Fridge and deep freezer with timer.
  • Water heater with timer.
  • HVAC system with timer and zone optimisation.
  • Electric vehicle with timer and rate configuration of charge.
  • Training you own sense of when to use electricity, like vacuuming and washing when the sun is shining.

Of the points above I have really only focused on the last two in my everyday routines, and when the electric vehicle came into play, it became a challenge to micromanage the system to optimize the utilization of the system. It just so happened that the local net metering scheme changed at about the same time I purchased my latest EV, and it actually resulted in choosing the larger battery option in the car than I had originally planned. I have described the detailed considerations in an earlier article, and it seems obvious now 2 years later that the larger EV battery was worth it.

My calculations at the time showed that a battery that was 20 kWh larger would pay for itself within 10 years if I could manage the charging just by prioritizing sunshine. Since then I have changed my electricity supplier to one that sells electricity cheaper when wind turbines produce more power, thus making me prioritize charging in windy situations too.

Electricity consumption

First and foremost let’s look at electricity consumption. On average I use 3,000 kWh of electricity every year in my household. I do not use electricity for heating or cooling my house which is why total consumption might seem low. I am connected to district heating, and in Denmark the average outdoor temperature is so low that use of air conditioning systems (HVAC) for cooling is rare.

In the graph below covering a decade of net electricity consumption I have highlighted 4 years:

  • 2010 (blue): No solar panels and no EV. This represents my baseline electricity consumption in a typical full year.
  • 2014 (yellow): Solar panels installed, but still no EV. From March through September I get a surplus of electricity production.
  • 2016 (green): First full year of driving an EV, Nissan Leaf, 25,000 km/year (16,000 miles/year). Electricity consumption doubles to 6,000 kWh, and only in the summer is it possible to balance out consumption and production.
  • 2021 (red): With a Tesla Model 3 long range 75 kWh driving 35,000 km/year (22,000 miles/year) and the yearly net metering out the window, I prioritize free referral code Supercharging in the winter when solar power is low.

When I bought my panels a net metering scheme based on yearly accounting was in effect, but 2 years ago it was replaced with hourly accounting, which left many private solar system owners angry and a class-action lawsuit was initiated but dismissed in court. For nearly 8 years I had conveniently been able to do the math once a year: Subtract kWh consumed from kWh produced and as it turned out the average 3,750 kWh produced each year covered with a comfortable margin the 3,000 kWh consumed.

Getting and EV in the household countered to some degree the disadvantage of net metering on a yearly basis to an hourly basis by making sure to charge as often as possible when the panel generated a surplus of electricity. As mentioned this is the reason I chose a larger range EV than I had planned for. The 20+ kWh of battery capacity in the long range Tesla Model 3 made it easier to charge less often in order to prioritize the sunshine. Not perfect, but still noticeable in terms of freedom of when to charge compared to the low range Nissan Leaf and BMW i3 I had been driving the years prior.

Electricity Production

In order to get a sense of when an investment in a solar power installation will have paid for itself it is of course essential to pay close attention to how much electricity is being generated by the system.

In the graphs below it’s evident that I live relatively far north on the northern hemisphere. Note that this year in red actually deviates quite a lot from the yearly average since May and July usually are the best performing months due to slightly lower average temperatures than June. Solar panels perform best with clear skies and low temperatures preferably with a breeze cooling the panel even more. That’s why you see record outputs in May and July because June is often hotter and more humid. Except this year giving the exact opposite of the norm.

You might think that the sun is up the longest in June and thus should give more power, but since the panels are oriented south and given how far north I live, the sun rises in the north-east and sets in the north-west, sunlight in those very early and late hours do not fall on the panels.

What about degradation? Well, 10 years is of course not a lot to go by, but if the trend in the graph showing total year output persists there might be a couple of percent performance loss per decade. The big risk with panels is more in terms of build quality. If they puncture and moisture gets inside they will fail fast. I chose a high quality brand at the time, even though there where many much cheaper options available. In fact I could have saved 30 — 40% in total costs, but I figured that might cut the lifetime by maybe 50% thinking 4 decades out, and indeed I have spotted many solar panels of the same age and lower price beginning to deteriorate. Since production of silicon based solar panels is an energy intensive process, the longer they sit on the roof producing energy the better.

Note: In Denmark I pay roughly 2.2 DKK/kWh (35 cents/kWh) for grid electricity including taxes. When I sell surplus electricity to the grid I get paid a maximum of 0.3 DKK/kWh (5 cents/kWh) because taxes are not a part of it. No, this is not a typo, there is a lot of tax on energy in this country. This incentifies me to use my generated electricity rather than sell it, which is a challenge with hourly net metering. This is where a home battery and/or EV helps a lot.

Break Even

So, when will the system have paid for itself? Well, in my situation, accounting for the many variable parameters, it looks as if it will be another 2 years before I can say the panels finally produces energy for free. That’s 12 years total, which is not bad considering the panels themselves has a 20 year warranty on construction defects. I expect no less than 30 years of operation.

Checking prices today, I find that an equivalent quality system would cost 60% of what I paid 10 years ago including installation, so investing in solar just makes even more sense now, and more so going forward. Solar panel prices has fallen almost 10× in the last 15 years!

However, it gets more complicated when an EV is included in the mix. You could argue that the EV is part of the system, and that you would now have to look at the combined cost of the solar system and electric vehicle as one single utility since they are practically dependent of each other. I save money on energy to move the car around, and I am able to soak up the surplus energy from the panels much more efficiently.

I could choose to ask the question of when the whole package has paid for it self compared to buying all the electricity from the grid or compare the payback time of the electric vehicle to an equivalent fossil fueled vehicle. In any case solar and EV is without a doubt a win-win.

The share of global solar energy will certainly accelerate with battery storage pricing plummeting. Will I invest in a home battery? I will consider it when energy arbitrage and virtual power plants becomes the norm. In such a scenario it might even be feasible to move the old panels over on top of my garage and replace my whole 50 year old roof with solar tiles. Who knows?

The Takeaway

So, as I said, it’s no easy task to answer the main question of this article, and it is clear that the financial parameters change all the time, so maybe one should not spend too much time trying to calculate this to perfection, but rather just get on with investing in a solar system and rejoice over the savings from day one. It probably will pay off in the end no matter what.

And remember, it is clear that if you plan to include an EV into the mix sooner or later, a matching installed solar capacity could greatly lower the payback time for the combined financial expenditure, more so the more your driving needs.

Below is a few photos of the installation of my panels 10 years ago:

16 panels each with a peak output of 250 Watts

Panels are configured in 2 strands connected to 2 separate 2 kW inverters

The finished system busy doing its photon to electron magic



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

This electric excavator has battery swap tech that lets it recharge in minutes [update]

Published

on

By

This electric excavator has battery swap tech that lets it recharge in minutes [update]

The electric construction equipment experts at XCMG just released a new, 25 ton electric crawler excavator ahead of bauma 2025 – and they have their eye on the global urban construction, mine operations, and logistical material handling markets.

UPDATE: telematics announcement.

Powered by a high-capacity 400 kWh lithium iron phosphate battery capable of delivering up to 8 hours of continuous operation, the XE215EV electric excavator promises uninterrupted operation at a lower cost of ownership and with even less downtime than its diesel counterparts.

XCMG is delivering on part of that reduced downtime promise with the lower maintenance and easier repair needs of electric equipment, and delivering on the rest of it with lickety-quick DC fast charging that can recharge the machine’s massive battery in 1.5-2 hours … but that’s not the slick bit. The XCMG XE125EV can be powered up without leaving the job site thanks to its BYD battery swap technology.

Advertisement – scroll for more content

We first covered XCMG and its battery swap technology back in January, and covered similar battery-swap tech being developed by MOOG Construction offshoot ZQUIP, as well – but while XCMG’s battery tech has been in production for several years, it’s still not widely known about in the West (even within the industry).

XCMG showed off its latest electric equipment at the December 2024 bauma China, including an updated version of its of its 85-ton autonomous electric mining truck that features a fully cab-less design – meaning there isn’t even a place for an operator to sit, let alone operate. And that’s too bad, because what operator wouldn’t want to experience an electric truck putting down 1070 hp more than 16,000 lb-ft of torque!?

Easy in, easy out

XCMG battery swap crane; via Etrucks New Zealand.

The best part? All of the company’s heavy equipment assets – from excavators to terminal tractors to dump trucks and wheel loaders – all use the same 400 kWh BYD battery packs, Milwaukee tool style. That means an equipment fleet can utilize x number of vehicles with a fraction of the total battery capacity and material needs of other asset brands. That’s not just a smart use of limited materials, it’s a smarter use of energy.

You can check out all the XE215EV’s specs at this tear sheet, and get an in-person look at the Chinese company’s latest electric excavator this week in Munich, Germany.

Telematics announcement at bauma

XCMG showcases green, smart tech at bauma 2025; via XCMG.

Earlier today, XCMG launched its next-generation Xrea Global Telematics Platform, integrating IoT, big data, cloud computing, and AI to enable what it’s caling, “seamless cross-border fleet management.”

The new telematics platform supports a dozen languages via PC and mobile interfaces, and offers real-time diagnostics, predictive maintenance, and data-driven optimization of both the vehicle and the vehicle’s batteries, empowering equipment managers and fleet operators to track fleets across town, or across time zones.

“XCMG remains committed to advancing engineering technology to empower a sustainable future. Our mission is to deliver efficient, intelligent, and eco-friendly lifecycle solutions for global clients,” said Mr. Yang Dongsheng, Chairman of XCMG Group and XCMG Machinery. “Today, 19% of our product portfolio comprises green innovations under our ‘Green Mountain’ new energy line, with full electrification across all series underway.”

SOURCE | IMAGES: XCMG; via PR Newswire.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla (TSLA) is having a terrible month, and it’s only April 10th!

Published

on

By

Tesla (TSLA) is having a terrible month, and it's only April 10th!

On today’s troubling episode of Quick Charge, we explore all the troubles befalling Tesla (and TSLA stock) in the month April – with top executives fleeing the ship, demand plummeting, sales slipping, government incentives at home and abroad under threat, and a raft of receipts brought on by an OpenAI lawsuit hitting the brand, it’s already a bad month for Elon … and there’s still 20 more days to go!

None of this even touches on the $43 million “backlogged” rebate scandal Tesla’s facing in Canada that’s being blamed for people’s negative attitudes about the brand (ha!) or the fact that neither the long-promised Roadster 2.0 or the Tesla Semi will see production anytime this year, either.

The word you’re looking for when you think of Tesla these days is, “cooked.”

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

Advertisement – scroll for more content

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.

Continue Reading

Environment

A vast 600 MW Texas solar farm just hit a major milestone [update]

Published

on

By

A vast 600 MW Texas solar farm just hit a major milestone [update]

Renewable developer Vesper Energy has cut the ribbon on Hornet Solar in Swisher County, Texas, one of the largest single-phase solar farms in the US.

As Electrek reported in January, the 600-megawatt (MW) Hornet Solar includes over 1.36 million modules covering more than 6 square miles. The project will contribute more than $100 million in new tax revenue to Swisher County and deliver 600 MWac of energy–enough to power 160,000 homes annually. 


January 30, 2025: “The seamless coordination between our team and our EPC partner, Blattner, has enabled us to remain ahead of schedule and on budget while ensuring quality throughout the process,” said Juan Suarez, co-CEO of Irving-based Vesper Energy.

Hornet Solar uses bifacial solar panels mounted on a single-axis tracking system to maximize efficiency. The solar farm is connected to Oncor Electric’s transmission system within ERCOT and is contracted to provide power to four off-take partners through individual Virtual Power Purchase Agreements (VPPAs).

Advertisement – scroll for more content

The Hornet Solar project in the Texas Panhandle is on track to be fully online by spring 2025.

Texas is a utility-scale solar leader in the US, with a ranking of No. 2 and 37,713 MW currently installed. It’s projected to install 51,144 MW over the next five years and move into the No. 1 spot, according to the Solar Energy Industries Association (SEIA). The total solar investment in the state is $45.2 billion.

On January 21, the SEIA, Conservative Texans for Energy Innovation (CTEI), Advanced Power Alliance (APA), and the Texas Solar + Storage Association (TSSA) reported that existing and expected utility-scale solar, wind, and battery storage projects will contribute over $20 billion in total tax revenue – and pay Texas landowners $29.5 billion – over the projects’ lifetimes.

Read more: Texas just became No 1 in the US for most utility-scale solar


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending