Connect with us

Published

on

This is the third in a series of articles I’m writing about flow battery technology, with a couple of articles devoted to Agora Energy Technologies’ specific technology. The first article dealt with flow batteries in general, and why they are a strongly promising component for grid storage. The second dealt with Agora’s unique differentiators. This article is devoted to a compelling alternative use case for their technology, one that’s immediate and high value.

The past three years have been a deeper dive into industrial processes and chemical engineering for me, and the implications for global warming. The CleanTechnica report on Carbon Engineering was a major effort, as were the many articles on industrial processes for carbon sequestration. The assessment of cement manufacturing, with and without the nonsensical use of concentrating solar power was another. 

This has led me to a deeper interest in the edge cases of climate solutions. My assessments and research over the past few years has led me to understand the major solution sets for energy, transportation, and biological carbon sequestration, but there’s still a lot of carbon and pollution emitted in industrial processes that needs to be addressed. As one example, there is the $44 billion global carbonates market.

Potassium carbonate is in a lot of things we use daily. It’s used in soaps, glass, and china dishes. It’s used as a drying agent in chemical processes. It’s in both Asian noodles and Dutch cocoa powder. Wine makers use it. It’s a water softener and a fire extinguisher. It’s used in welding and animal feed.

Sodium carbonate is equally widely used. It’s in glass, paper, rayon, soaps, and detergents. It’s used for water softening. It’s a food additive that controls acidity. As a weak, safe to handle base, it’s used in a lot of chemical processes. Over 40 million metric tons are produced each year, amounting to several kilograms for every person on Earth. 

Between them, they represent a roughly $44 billion global annual market. And the current processes that make them are pretty nasty in a lot of ways.

Let’s take sodium carbonate as an example. About 75% of all the sodium carbonate used in the world is made by the Solvay Process. The US gets most of its sodium carbonate from a massive trona deposit in Wyoming.

Syracuse Solvay process works circa 1900 courtesy US Library of Congress

The Solvay Process was invented in 1861, and is still used everywhere today. It bubbles CO2 up through ammonia-based brine in a four-step chemical engineering process that produces and uses CO2 at various points in the process. And of course there’s the ammonia, which is highly toxic, with 15-minute exposure limits to levels of 35 ppm of gaseous ammonia per the US Occupational Safety and Health Administration. Ammonia is a manufactured substance in and of itself, using hydrogen created from fossil fuels today with 8-35 times the mass of CO2 as hydrogen. Prolonged exposure to small amounts of ammonia cause irreversible health effects. The ammonia is mostly recycled with only small amounts being lost, but eliminating it entirely would be beneficial.

The Solvay process actually captures some CO2 produced in one step to use in a later stage, but overall, the deployed process is a net emitter of 2.74 times the mass of CO2 as the mass of carbonates produced.

Solvay chemical process flow courtesy of UN IPCC

Solvay chemical process flow courtesy of UN IPCC

The source of heat in the first step interested me. That step in the process is the same as for cement, incidentally. It requires substantial heat, in the 600 to 1000 degree Celsius range to calcinate limestone to make quicklime and CO2. Some of the CO2 and all of the quicklime are used in later steps in the process, unlike cement making where all the CO2 is just emitted into the atmosphere. 

As a side note, a Lafarge cement expert told me when I was exploring cement that they had no good process for capturing limestone kiln CO2 emissions, which clearly isn’t the case as it has been done as an industrial process for 160 years. Capturing flue CO2 isn’t hard, it’s just expensive, so it isn’t done unless there’s a very good economic reason.

Then there’s another temperature challenge, which is that the third step in the process is strongly exothermic, which means it gives off a lot of heat, just not usefully. One of the key challenges in the process is keeping the temperature low enough. That’s typically done with cooling water from ground sources, a challenged source in many parts of the world today, with thermal generation plants shutting down or running on diminished capacity as ground water heats up past the point where it works well with the designed equipment. The Solvay company shut down four of its 22 Sao Paulo, Brazil units due to the river they take water from drying up in 2014, a taste of the future for many heavy water consuming industrial plants located on water sources at risk from global warming.

The second instance of the application of heat in step 4 is also interesting. That requires another kiln with a temperature of about 300 degrees Celsius. Any time I see heat these days in industrial processes, I assume it’s coming from fossil fuels, and I was unsurprised to find that the preferred energy source for the Solvay Process was coke, a processed coal derivative.

That’s not all of course. The Solvay Process is much less polluting than the Leblanc Process it replaced, but inland sites end up with 50% more waste deposits of by-products than the sodium carbonates of value. Solvay, New York, which was renamed when the Solvay company built a plant there, has massive waste beds that have polluted the local area and contributed to the nearby Onondaga Lake being declared a Superfund Site.

Long wall trona mine image courtesy Government of Wyoming

Long wall trona mine image courtesy Government of Wyoming

I haven’t done the same assessment of the environmental impacts of the US trona mining and processing sodium carbonate stream, but at first glance it looks like a high CO2 emitter with a fair amount of use of toxic chemicals and a challenging waste stream as well.

Why is this digression interesting? Well, the Agora technology can create sodium carbonate in two steps without any heat and with barely any temperature management required. 

Wait. What? It’s a battery, not a chemical plant, isn’t it?

Well, yes. The closed-loop model cycles the chemicals between their base form and their charged form and back. But the open-loop model, which changes in some of the details, produces sodium carbonate after the second cycle instead of turning it back into CO2, in a up to 35% by weight solution with water. And both act as batteries, taking in electricity in the charging stage and producing electricity in the discharge phase.

So the ammonia-based, high-heat, high-cooling, five-step process turns into a shorter process with much less harmful outcomes. It takes electricity when it’s cheap at night or other times, from renewables wherever possible of course, to ‘charge’ the battery. Then during the daytime, instead of reversing the process as in the open-flow approach, it sends it through Agora’s cells with a different chemistry and produces carbonates in solution and electricity. The entire daytime process from lights to pumps to drying the carbonate solution and the like can be run by a portion of the electricity that’s produced.

The output sodium carbonate is pure as well. It’s a pure compound in pure water. Heat the water to evaporate it off, and the purity should be well over the 98% purity typically guaranteed for food additives for the most expensive variants. There’s enough electricity in the battery to power the evaporation directly per my calculations with the CEO Dr Christina Gyenge, but there’s far more than enough to use heat pump technology with a COP of 4 to do that, or to pump it over a source of waste industrial heat elsewhere, and leave a lot of electricity left over for other uses in the industrial facility or to sell to the grid.

So, this technology can take a cheap feedstock we have too much of in the world, CO2, regardless of where it comes from and using renewable electricity produce very high quality industrial chemicals that are used globally in a market worth tens of billions of dollars.

Agora’s CO2-based redox flow battery technology is an industrial component from the future.

Full disclosure. I have a professional relationship with Agora as a strategic advisor and Board observer. I did an initial strategy session with Agora about their redox flow battery technology in late 2019 and was blown away by what they had in hand, and my formal role with the firm started at the beginning of 2021. I commit to being as objective and honest as always, but be aware of my affiliation.

 

 
 

Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla Semi suffers more delays and ‘dramatic’ price increase

Published

on

By

Tesla Semi suffers more delays and 'dramatic' price increase

According to a Tesla Semi customer, the electric truck program is suffering more delays and a price increase that is described as “dramatic.”

Tesla Semi has seen many delays, more than any other vehicle program at Tesla.

It was initially unveiled in 2017, and CEO Elon Musk claimed that it would go into production in 2019.

In late 2022, Tesla held an event where it unveiled the “production version” of the Tesla Semi and delivered the first few units to a “customer-partner”: PepsiCo.

Advertisement – scroll for more content

Tesla Semi PepsiCo truck u/Tutrifor
Tesla Semi Image credit: u/Tutrifor

More than 3 years later, the vehicle never went into volume production. Instead, Tesla only ran a very low volume pilot production at a factory in Nevada and only delivered a few dozen trucks to customers as part of test programs.

But Tesla promised that things would finally happen for the Tesla Semi this year.

Tesla has been building a new high-volume production factory specifically for the Tesla Semi program in a new building next to Gigafactory Nevada.

The goal was to start production in 2025, start customer deliveries, and ramp up to 50,000 trucks yearly.

Now, Ryder, a large transportation company and early customer-partner in Tesla’s semi truck program, is talking about further delays. The company also refers to a significant price increase.

California’s Mobile Source Air Pollution Reduction Review Committee (MSRC) awarded Ryder funding for a project to deploy Tesla Semi trucks and Megachargers at two of its facilities in the state.

Ryder had previously asked for extensions amid the delays in the Tesla Semi program.

In a new letter sent to MSRC last week and obtained by Electrek, Ryder asked the agency for another 28-month delay. The letter references delays in “Tesla product design, vehicle production” and it mentions “dramatic changes to the Tesla product economics”:

This extension is needed due to delays in Tesla product design, vehicle production and dramatic changes to the Tesla product economics. These delays have caused us to reevaluate the current Ryder fleet in the area.

The logistics company now says it plans to “deploy 18 Tesla Semi vehicles by June 2026.”

The reference to “dramatic changes to the Tesla product economics” points to a significant price increase for the Tesla Semi, which further communication with MSRC confirms.

In the agenda of a meeting to discuss the extension and changes to the project yesterday, MSRC confirms that the project went from 42 to 18 Tesla Semi trucks while the project commitment is not changing:

Ryder has indicated that their electric tractor manufacturer partner, Tesla, has experienced continued delays in product design and production. There have also been dramatic changes to the product economics. Ryder requests to reduce the number of vehicles from 42 to 18, stating that this would maintain their $7.5 million private match commitment.

In addition to the electric trucks, the project originally involved installing two integrated power centers and four Tesla Megachargers, split between two locations. Ryder is also looking to now install 3 Megachargers per location for a total of 6 instead of 4.

Tesla Semi Megacharger hero

The project changes also mention that “Ryder states that Tesla now requires 600kW chargers rather than the 750kW units originally engineered.”

Tesla Semi Price

When originally unveiling the Tesla Semi in 2017, the automaker mentioned prices of $150,000 for a 300-mile range truck and $180,000 for the 500-mile version. Tesla also took orders for a “Founder’s Series Semi” at $200,000.

However, Tesla didn’t update the prices when launching the “production version” of the truck in late 2023. Price increases have been speculated, but the company has never confirmed them.

New diesel-powered Class 8 semi trucks in the US today often range between $150,000 and $220,000.

The combination of a reasonable purchase price and low operation costs, thanks to cheaper electric rates than diesel, made the Tesla Semi a potentially revolutionary product to reduce the overall costs of operation in trucking while reducing emissions.

However, Ryder now points to a “dramatic” price increase for the Tesla Semi.

What is the cost of a Tesla Semi electric truck now?

Electrek’s Take

As I have often stated, Tesla Semi is the vehicle program I am most excited about at Tesla right now.

If Tesla can produce class 8 trucks capable of moving cargo of similar weight as diesel trucks over 500 miles on a single charge in high volume at a reasonable price point, they have a revolutionary product on their hands.

But the reasonable price part is now being questioned.

After reading the communications between Ryder and MSRC, while not clear, it looks like the program could be interpreted as MSRC covering the costs of installing the charging stations while Ryder committed $7.5 million to buying the trucks.

The math makes sense for the original funding request since $7.5 million divided by 42 trucks results in around $180,000 per truck — what Tesla first quoted for the 500-mile Tesla Semi truck.

Now, with just 18 trucks, it would point to a price of $415,000 per Tesla Semi truck. It’s possible that some of Ryder’s commitment could also go to an increase in Megacharger prices – either per charger or due to the two additional chargers. MSRC said that they don’t give more money when prices go up after an extension.

I wouldn’t be surprised if the 500-mile Tesla Semi ends up costing $350,000 to $400,000.

If that’s the case, Tesla Semi is impressive, but it won’t be the revolutionary product that will change the trucking industry.

It will need to be closer to $250,000-$300,000 to have a significant impact, which is not impossible with higher-volume production but would be difficult.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

BP chair Helge Lund to step down after oil major pledges strategic reset

Published

on

By

BP chair Helge Lund to step down after oil major pledges strategic reset

British oil and gasoline company BP (British Petroleum) signage is being pictured in Warsaw, Poland, on July 29, 2024.

Nurphoto | Nurphoto | Getty Images

British oil major BP on Friday said its chair Helge Lund will soon step down, kickstarting a succession process shortly after the company launched a fundamental strategic reset.

“Having fundamentally reset our strategy, bp’s focus now is on delivering the strategy at pace, improving performance and growing shareholder value,” Lund said in a statement.

“Now is the right time to start the process to find my successor and enable an orderly and seamless handover,” he added.

Lund is expected to step down in 2026. BP said the succession process will be led by Amanda Blanc in her capacity as senior independent director.

Shares of BP traded 2.2% lower on Friday morning. The London-listed firm has lagged its industry rivals in recent years.

BP announced in February that it plans to ramp up annual oil and gas investment to $10 billion through 2027 and slash spending on renewables as part of its new strategic direction.

Analysts have broadly welcomed BP’s renewed focus on hydrocarbons, although the beleaguered energy giant remains under significant pressure from activist investors.

U.S. hedge fund Elliott Management has built a stake of around 5% to become one of BP’s largest shareholders, according to Reuters.

Activist investor Follow This, meanwhile, recently pushed for investors to vote against Lund’s reappointment as chair at BP’s April 17 shareholder meeting in protest over the firm’s recent strategy U-turn.

Lund had previously backed BP’s 2020 strategy, when Bernard Looney was CEO, to boost investment in renewables and cut production of oil and gas by 40% by 2030.

BP CEO Murray Auchincloss, who took the helm on a permanent basis in January last year, is under significant pressure to reassure investors that the company is on the right track to improve its financial performance.

‘A more clearly defined break’

“Elliott continues to press BP for a sharper, more clearly defined break with the strategy to pivot more quickly toward renewables, that was outlined by Bernard Looney when he was CEO,” Russ Mould, AJ Bell’s investment director, told CNBC via email on Friday.

“Mr Lund was chair then and so he is firmly associated with that plan, which current boss Murray Auchincloss is refining,” he added.

Mould said activist campaigns tend to have “fairly classic thrusts,” such as a change in management or governance, higher shareholder distributions, an overhaul of corporate structure and operational improvements.

“In BP’s case, we now have a shift in capital allocation and a change in management, so it will be interesting to see if this appeases Elliott, though it would be no surprise if it feels more can and should be done,” Mould said.

Continue Reading

Environment

Quick Charge | hydrogen hype falls flat amid very public failures

Published

on

By

Quick Charge | hydrogen hype falls flat amid very public failures

On today’s hyped up hydrogen episode of Quick Charge, we look at some of the fuel’s recent failures and billion dollar bungles as the fuel cell crowd continues to lose the credibility race against a rapidly evolving battery electric market.

We’re taking a look at some of the recent hydrogen failures of 2025 – including nine-figure product cancellations in the US and Korea, a series of simultaneous bus failures in Poland, and European executives, experts, and economists calling for EU governments to ditch hydrogen and focus on the deployment of a more widespread electric trucking infrastructure.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Advertisement – scroll for more content

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending