Connect with us

Published

on

This is the third in a series of articles I’m writing about flow battery technology, with a couple of articles devoted to Agora Energy Technologies’ specific technology. The first article dealt with flow batteries in general, and why they are a strongly promising component for grid storage. The second dealt with Agora’s unique differentiators. This article is devoted to a compelling alternative use case for their technology, one that’s immediate and high value.

The past three years have been a deeper dive into industrial processes and chemical engineering for me, and the implications for global warming. The CleanTechnica report on Carbon Engineering was a major effort, as were the many articles on industrial processes for carbon sequestration. The assessment of cement manufacturing, with and without the nonsensical use of concentrating solar power was another. 

This has led me to a deeper interest in the edge cases of climate solutions. My assessments and research over the past few years has led me to understand the major solution sets for energy, transportation, and biological carbon sequestration, but there’s still a lot of carbon and pollution emitted in industrial processes that needs to be addressed. As one example, there is the $44 billion global carbonates market.

Potassium carbonate is in a lot of things we use daily. It’s used in soaps, glass, and china dishes. It’s used as a drying agent in chemical processes. It’s in both Asian noodles and Dutch cocoa powder. Wine makers use it. It’s a water softener and a fire extinguisher. It’s used in welding and animal feed.

Sodium carbonate is equally widely used. It’s in glass, paper, rayon, soaps, and detergents. It’s used for water softening. It’s a food additive that controls acidity. As a weak, safe to handle base, it’s used in a lot of chemical processes. Over 40 million metric tons are produced each year, amounting to several kilograms for every person on Earth. 

Between them, they represent a roughly $44 billion global annual market. And the current processes that make them are pretty nasty in a lot of ways.

Let’s take sodium carbonate as an example. About 75% of all the sodium carbonate used in the world is made by the Solvay Process. The US gets most of its sodium carbonate from a massive trona deposit in Wyoming.

Syracuse Solvay process works circa 1900 courtesy US Library of Congress

The Solvay Process was invented in 1861, and is still used everywhere today. It bubbles CO2 up through ammonia-based brine in a four-step chemical engineering process that produces and uses CO2 at various points in the process. And of course there’s the ammonia, which is highly toxic, with 15-minute exposure limits to levels of 35 ppm of gaseous ammonia per the US Occupational Safety and Health Administration. Ammonia is a manufactured substance in and of itself, using hydrogen created from fossil fuels today with 8-35 times the mass of CO2 as hydrogen. Prolonged exposure to small amounts of ammonia cause irreversible health effects. The ammonia is mostly recycled with only small amounts being lost, but eliminating it entirely would be beneficial.

The Solvay process actually captures some CO2 produced in one step to use in a later stage, but overall, the deployed process is a net emitter of 2.74 times the mass of CO2 as the mass of carbonates produced.

Solvay chemical process flow courtesy of UN IPCC

Solvay chemical process flow courtesy of UN IPCC

The source of heat in the first step interested me. That step in the process is the same as for cement, incidentally. It requires substantial heat, in the 600 to 1000 degree Celsius range to calcinate limestone to make quicklime and CO2. Some of the CO2 and all of the quicklime are used in later steps in the process, unlike cement making where all the CO2 is just emitted into the atmosphere. 

As a side note, a Lafarge cement expert told me when I was exploring cement that they had no good process for capturing limestone kiln CO2 emissions, which clearly isn’t the case as it has been done as an industrial process for 160 years. Capturing flue CO2 isn’t hard, it’s just expensive, so it isn’t done unless there’s a very good economic reason.

Then there’s another temperature challenge, which is that the third step in the process is strongly exothermic, which means it gives off a lot of heat, just not usefully. One of the key challenges in the process is keeping the temperature low enough. That’s typically done with cooling water from ground sources, a challenged source in many parts of the world today, with thermal generation plants shutting down or running on diminished capacity as ground water heats up past the point where it works well with the designed equipment. The Solvay company shut down four of its 22 Sao Paulo, Brazil units due to the river they take water from drying up in 2014, a taste of the future for many heavy water consuming industrial plants located on water sources at risk from global warming.

The second instance of the application of heat in step 4 is also interesting. That requires another kiln with a temperature of about 300 degrees Celsius. Any time I see heat these days in industrial processes, I assume it’s coming from fossil fuels, and I was unsurprised to find that the preferred energy source for the Solvay Process was coke, a processed coal derivative.

That’s not all of course. The Solvay Process is much less polluting than the Leblanc Process it replaced, but inland sites end up with 50% more waste deposits of by-products than the sodium carbonates of value. Solvay, New York, which was renamed when the Solvay company built a plant there, has massive waste beds that have polluted the local area and contributed to the nearby Onondaga Lake being declared a Superfund Site.

Long wall trona mine image courtesy Government of Wyoming

Long wall trona mine image courtesy Government of Wyoming

I haven’t done the same assessment of the environmental impacts of the US trona mining and processing sodium carbonate stream, but at first glance it looks like a high CO2 emitter with a fair amount of use of toxic chemicals and a challenging waste stream as well.

Why is this digression interesting? Well, the Agora technology can create sodium carbonate in two steps without any heat and with barely any temperature management required. 

Wait. What? It’s a battery, not a chemical plant, isn’t it?

Well, yes. The closed-loop model cycles the chemicals between their base form and their charged form and back. But the open-loop model, which changes in some of the details, produces sodium carbonate after the second cycle instead of turning it back into CO2, in a up to 35% by weight solution with water. And both act as batteries, taking in electricity in the charging stage and producing electricity in the discharge phase.

So the ammonia-based, high-heat, high-cooling, five-step process turns into a shorter process with much less harmful outcomes. It takes electricity when it’s cheap at night or other times, from renewables wherever possible of course, to ‘charge’ the battery. Then during the daytime, instead of reversing the process as in the open-flow approach, it sends it through Agora’s cells with a different chemistry and produces carbonates in solution and electricity. The entire daytime process from lights to pumps to drying the carbonate solution and the like can be run by a portion of the electricity that’s produced.

The output sodium carbonate is pure as well. It’s a pure compound in pure water. Heat the water to evaporate it off, and the purity should be well over the 98% purity typically guaranteed for food additives for the most expensive variants. There’s enough electricity in the battery to power the evaporation directly per my calculations with the CEO Dr Christina Gyenge, but there’s far more than enough to use heat pump technology with a COP of 4 to do that, or to pump it over a source of waste industrial heat elsewhere, and leave a lot of electricity left over for other uses in the industrial facility or to sell to the grid.

So, this technology can take a cheap feedstock we have too much of in the world, CO2, regardless of where it comes from and using renewable electricity produce very high quality industrial chemicals that are used globally in a market worth tens of billions of dollars.

Agora’s CO2-based redox flow battery technology is an industrial component from the future.

Full disclosure. I have a professional relationship with Agora as a strategic advisor and Board observer. I did an initial strategy session with Agora about their redox flow battery technology in late 2019 and was blown away by what they had in hand, and my formal role with the firm started at the beginning of 2021. I commit to being as objective and honest as always, but be aware of my affiliation.

 

 
 

Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

YMX Logistics deploys 20 new Orange EV electric yard trucks

Published

on

By

YMX Logistics deploys 20 new Orange EV electric yard trucks

Leading yard operation 3PL YMX Logistics has announced plans to deploy fully twenty (20) of Orange EV’s fully electric Class 8 terminal trucks at a number of distribution and manufacturing sites across North America.

As the shipping and logistics industries increasingly move to embrace electrification, yard operations have proven to be an almost ideal use case for EVs, enabling companies like Orange EV, which specialize in yard hostlers or terminal tractors, to drive real, impactful change. To that end, companies like YMX are partnering with Orange EV.

“This relationship between YMX and Orange EV is a significant step forward in transforming yard operations across North America,” said Matt Yearling, CEO of YMX Logistics. “Besides the initial benefits of reduction in emissions and carbon footprint, our customers are also seeing improvements in the overall operational efficiency and seeking to expand. Our team members have also been sharing positive feedback about their new equipment and highlighting the positive impact on their health and day-to-day activities.”

This Orange looks good in blue

YMX Logistics electric yard trucks; by Orange EV.

One of the most interesting aspects of this story – beyond the Orange EV HUSK-e XP’s almost unbelievable 180,000 lb. GCWR spec. – is that this isn’t a story about California’s ports, which mandate EVs. Instead, YMX is truly deploying these trucks throughout the country, with at least four currently in Chicago (and more on the way).

“Our collaboration with YMX Logistics represents a powerful stride in delivering sustainable yard solutions at scale for enterprise customers,” explains Wayne Mathisen, CEO of Orange EV. “With rising demand for electric yard trucks, our joint efforts ensure that more companies can access the environmental, financial, and operational benefits of electrification … this is a win for the planet, the workforce, and the bottom line of these organizations.”

We interviewed Orange EV founder Kurt Neutgens on The Heavy Equipment Podcast a few months back, but if you’re not familiar with these purpose-built trucks, it’s worth a listen.

HEP-isode 26

SOURCE | IMAGES: YMX Logistics.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai IONIQ 9 debut, new NACS Kia, solid state batteries from Honda

Published

on

By

Hyundai IONIQ 9 debut, new NACS Kia, solid state batteries from Honda

On today’s thrilling episode of Quick Charge, we’ve got the all-new Hyundai IONIQ 9 and its “a “rolling living room” pivoting captain’s chairs, Kia gets a go-fast 7 passenger SUV and an updated EV6, while Honda announces plans to start producing solid-state batteries at its new facility in just a few weeks.

We’ve also got big news for American workers – a Minnesota power company is ditching coal for solar while ExxonMobil and LG Chem get to work extracting thousands of tons of lithium out of Tennessee’s soil.

Today’s episode is sponsored by BLUETTI, a leading provider of portable power stations, solar generators, and energy storage systems. For a limited time, save up to 52% during BLUETTI’s exclusive Black Friday sale, now through November 28, and be sure to use promo code BLUETTI5OFF for 5% off all power stations sitewide. Learn more by clicking here.

You can watch the episode, below.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news!

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show!

Read more: Farm-fegnugen? Volkswagen rolls out an electric tractor.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

One of the US’s first solar peaker plants – with Tesla Megapacks – just came online

Published

on

By

One of the US’s first solar peaker plants – with Tesla Megapacks – just came online

Arevon Energy has kicked off operations at Vikings Solar-plus-Storage – one of the US’s first utility-scale solar peaker plants.

The $529 million project in Imperial County, California, near Holtville, features 157 megawatts of solar power paired with 150 megawatts/600 megawatt hours of battery storage.

Vikings Solar-plus-Storage is designed to take cheap daytime solar power and store it for use during more expensive peak demand times, like late afternoons and evenings. The battery storage system can quickly respond to changes in demand, helping tackle critical grid needs.

Vikings leverages provisions in the Inflation Reduction Act that support affordable clean energy, strengthen grid resilience, boost US manufacturing, and create good jobs.

The Vikings project has already brought significant benefits to the local area. It employed over 170 people during construction, many local workers, and boosted nearby businesses like restaurants, hotels, and stores. On top of that, Vikings will pay out more than $17 million to local governments over its lifespan.

“Vikings’ advanced design sets the standard for safe and reliable solar-plus-storage configurations,” said Arevon CEO Kevin Smith. “The project incorporates solar panels, trackers, and batteries that showcase the growing strength of US renewable energy manufacturing.”

The project includes Tesla Megapack battery systems made in California, First Solar’s thin-film solar panels, and smart solar trackers from Nextracker. San Diego-based SOLV Energy handled the engineering, procurement, and construction work.

San Diego Community Power (SDCP) will buy the energy from the Vikings project under a long-term deal, helping power nearly 1 million customer accounts. SDCP and Arevon have also signed an agreement for the 200 MW Avocet Energy Storage Project in Carson, California, which will start construction in early 2025.

Vikings is named after the Holtville High School mascot, and Arevon is giving back to the local community by funding scholarships for deserving Holtville High students.

Arevon is a major renewable energy developer across the US and a key player in California, with nearly 2,500 MW in operation and more than 1,250 MW under construction.

Read more: Minnesota’s largest coal plant goes solar: Sherco Solar comes online


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending