Connect with us

Published

on

What was that again about wind and solar power being unreliable? Some energy pundits are still tossing that old ball around, but meanwhile savvy investors are plowing billions into new energy storage facilities that spit out clean kilowatts on demand. Like they say, money talks, and in a fitting twist the latest example comes from the Golden State, California.

Massive New Energy Storage Facility For The Golden State

California has plenty of both wind and solar, and it also has an ambitious renewable energy goal, which makes it the perfect spot to launch ambitious clean power projects such as massive new energy storage facilities.

California is also the perfect place to demonstrate how existing, climate-killing fossil energy sites can transition rapidly into climate action sites. After all, the state has played a key role in the US fossil energy industry, despite its image as an environmental warrior. It is riddled with oil and gas wells in addition to fossil power plants and existing transmission lines, and some of them are ripe for the picking by clean energy investors.

The new energy storage facility is a case in point. The diversified energy firm Vistra is behind the project. They are pitching it as the largest battery-type storage facility of its kind, and they are not kidding.

Located in Moss Landing near Monterey, California, the facility got under way in 2020 and it just completed an expansion, bringing its capacity to 400 megawatts or 1,600 megawatt-hours, depending on who’s counting and why. According to Vistra, the expansion kicked Moss Landing into world’s record territory.

That’s nothing. So far, work on the first two phases has progressed ahead of schedule, and Vistra is looking forward to another expansion that will bring the plant up to 1,500 megawatts, which translates into 6,000 megawatt-hours.

For those of you keeping score at home, the State of California, Pacific Gas and Electric Company, LG Energy Solution, and the engineering and construction firm Burns & McDonnell also have a hand in the project.

The Moss Landing Energy Storage Project Is A Good Start…

Land use issues are already threatening to slow down the clean energy transition, so any use of existing energy-related sites is an advantage that helps speed up the transition to clean power. Large-scale battery facilities like the Moss Landing project enable more wind and solar development on the grid, so the impact ripples out far beyond the site itself.

Vistra CEO Curt Morgan explains that “what’s great about this particular site is that it has the space to support even further expansion – up to 1,500 MW/6,000 MWh – while responsibly utilizing our existing site infrastructure, including existing transmission lines and grid interconnection.”

The battery array is housed inside an existing turbine building at the site, which is almost as long as three football fields, so just imagine if all those batteries involved digging up a pollinator habitat instead of occupying pre-built space.

As for what has been on the site previously, Moss Landing has a fossil energy pedigree of historic dimensions. The story started back in 1950, when a power plant built by Pacific Gas & Electric went into operation. PG&E was the whole story for almost 50 years, until 1998 when a series of transactions from Duke Energy to LS General Finance to Dynegy landed Moss Landing in the lap of Vistra, by dint of a 2018 merger with Dynegy.

Vistra has gotten loads of good press for the Moss Landing energy storage facility, which comes under its Vistra Zero branch. Other energy storage projects in the works in California and Texas, where Vistra Zero also doing a lot of solar. They also count the 2,300 megawatt, 1990’s-era Comanche Peak nuclear power plant in Texas among its zero emission assets, though a pesky fire at the facility has raised some red flags relating to the stowing of all your energy eggs in one basket. As of this writing the plant’s two units are scheduled for decommissioning between 2030 and 2033.

…But Vistra Has A Long Row To Hoe

On the down side, the Moss Landing energy storage project is part of a broader plan for leveraging batteries to store electricity from fossil sources in addition to wind and solar, for at least as long as fossils power the grid.

In that regard, Vistra has much to do and little time before the climate piper must be paid. The Moss Landing energy facility is dwarfed by the holdings of Vistra subsidiary Luminant, which counts 39,000 megawatts worth of generation capacity across 12 states, counting Comanche Peak.

The Luminant portfolio includes some solar, but as of 2019 its solar holdings barely registered on a pie chart. Natural gas and coal still share the throne, with nuclear holding on to a somewhat meaty sliver.

Nevertheless, Vistra’s interest in wind power has been coming along at a nice clip, and other signs of a strong uptick in renewable energy activity have been growing this year, partly spurred by the settlement of a complaint brought by Sierra Club. The settlement involves closing Vistra’s Joppa coal and gas power plant in Illinois, and it provides the company with an opportunity to lobby for the proposed “Illinois Coal to Solar and Energy Storage Act.”

If passed, the bill would help shepherd along Vistra’s plans for converting several other coal power plants in Illinois to renewable energy. The company has already set aside $550 million for the effort, which would involve a total of nine sites, 300 megawatts in solar capacity, and 175 megawatts in battery-type energy storage. Vistra also plans a similar fate for its coal power plants in Ohio.

If you’re thinking the Joppa site will soon be plastered with solar panels, guess again. Apparently the site is not suited for conversion to utility scale solar power. A 45-megawatt battery will go there instead, which is enough to serve about 22,500 typical homes.

Beyond Batteries For Long Duration Energy Storage

That figure of 22,500 homes sounds impressive, but the big question is for how long. Battery-type energy storage systems typically only last just a few hours. That is enough to power a grid past peak demand periods without having to dial up additional fossil energy capacity, typically in the form of natural gas. However, four hours is not nearly long enough to replace all existing “peaker” plants.

Our friends over at Power Magazine recently cited a study by the National Renewable Energy Laboratory, which indicates that about 150 gigawatts in fossil energy peaker plant capacity is on track to retire within the next 20 years in the US. Battery-type energy storage facilities could only replace about 28 of those gigawatts under a four-hour scenario.

To replace the rest, something that lasts longer than four hours or so is needed. The US Department of Energy has been hammering away at the problem under its DAYS “Duration Added to ElectricitY Storage” program. The acronym is a bit of a stretch, and so is the endeavor. DAYS is looking for a minimum of 10 hours of energy storage, preferably reaching 100 hours or more.

That might sound like a tough nut to crack considering the state of battery-type storage. However, pumped storage hydropower already fits the bill, proving that it is possible. The problem with pumped hydro is the narrow range of options for site selection.

Flow batteries are another water-based option that allows for a much wider range of deployment. The water is contained in tanks and the whole thing can be packed into a a relatively small container, or a larger facility depending on the use case.

Another option is to take the gravity-based underpinnings of pumped hydropower and apply them to solid objects instead of water.

One interesting mashup in that area is the company Energy Vault, which is considering the use of recycled wind turbine blades in a gravity-based storage system that resembles a sideways Ferris wheel.

The compressed air energy storage field is also growing out and scaling up, so keep an eye on that, along with thermal systems and other interesting storage solutions.

Follow me on Twitter @TinaMCasey.

Photo: Moss Landing energy storage facility courtesy of Vistra.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Published

on

By

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Veteran marine and industrial power solutions company Volvo Penta has joined forces with energy solutions provider e-power to build battery energy storage systems (BESS). Volvo Penta’s battery systems for energy storage will power BESS units built by e-power that can be catered to a range of applications, most notably construction rental clients like Boels Rentals in Europe.

Volvo Penta is a provider of sustainable power solutions that currently serves land and sea applications under the Volvo Group umbrella. As more and more of the world goes all-electric, the global manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

Nearly 100 years later, Volvo Penta remains an industry leader in marine propulsion systems and industrial engines. As more and more of the world goes all-electric, the Swedish manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

For example, all Volvo Penta diesel engines now run on hydro-treated vegetable oil (HVO), reducing well-to-wheel emissions by up to 90% across the marine and industrial power industries. On the zero-emissions side, Volvo Penta has expressed its dedication to fossil-free power solutions, including battery electric components to serve heavy-duty applications such as terminal tractors, forklifts, drill rigs, and feed mixers, to name a few.

Advertisement – scroll for more content

To leverage its battery electric value chain, Volvo Penta has also ventured into battery systems for energy storage (or BESS subsystems). These energy-dense, purpose-built BESS subsystems can provide portable, sustainable energy for all-electric charging and reduce grid dependency.

Volvo battery
Source: Volvo Penta

Volvo Penta to deploy battery systems for energy storage

Volvo Penta recently announced a strategic partnership with e-power, a Belgian power solutions provider. Together, Volvo Penta and e-power will develop a scalable Battery Energy Storage System (BESS) for Boels Rental.

The collaboration continues a long-standing partnership between all three companies. Boels – one of the largest construction rental companies is a long-time customer of e-power generators that utilize Volvo Penta engines. As the company shifts toward electrification and sustainability, it will again turn to those companies to deliver reliable performance.

Volvo Penta’s BESS subsystem comprises battery packs, a Battery Management System (BMS), DC/DC converters, and thermal management, combining to offer a compact, high-density, and transport-friendly solution optimized for rental operations. The company shared that this BESS design is integration-ready, enabling other OEMs like e-power to adapt and scale systems to customer-specific needs. Per e-power business support director, Jens Fets:

We’ve built our reputation on reliability and efficient power systems. Working again with Volvo Penta, this time on battery energy storage, allows us to meet the growing demand for energy in a silent, low-emissions, compact and mobile design—especially in rental applications.

The deployment of these new battery energy storage systems will help Boels cater to its customers’ growing demand for clean, silent, and mobile energy solutions in construction and other industrial applications. 

Aside from being more quickly adaptable to customer needs, Volvo Penta says its BESS architecture marks an overall shift in rental power systems. This is welcome news for all who support a cleaner, more sustainable future across all industries.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

Published

on

By

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

That didn’t take long! Just a few hours after Mercedes revealed the screen-heavy interior of its upcoming 2026 GLC EV, photos of the new crossover’s exterior – and that controversial grille! – leaked on Instagram and Reddit. We’ve got them here.

Two days ahead of the GLC EV’s officially schedule global debut, images that reportedly show the new 2026 Mercedes undisguised have leaked on Instagram and Reddit. They show the blocky new light-up grille on the nose of a very smooth, jellybean-like crossover shape that, despite Mercedes’ insistence that it’s moving away from the EQ series’ design language, looks an awful lot like an EQ Mercedes.

Check out the leaked images from kindleauto’s Instagram account, below, and see if you agree with that assessment.

If you need to see more before you feel comfortable commenting on the new SUV’s looks, there’s a few more angles over on the r/mercedes_benz subreddit.

Advertisement – scroll for more content

Leaked exterior pictures of the upcoming GLC EV
byu/Quick_Coyote_7649 inmercedes_benz

As with everything else on the internet, take those unofficial images with a grain of salt and maybe wait until the GLC EV’s official reveal in a few days’ time before casting your final vote on the new look – but there’s very little reason to believe the new Mercedes will look terribly different from what you see here.

Will the new grille and tech-forward interior with its massive, 39″ screen and MB.OS software be enough to turn the tide for Mercedes-Benz, enabling it to finally gain some traction in the electric crossover market? That remains to be seen, but the recently updated Tesla Model Y and crisply-styled new BMW iX3 with its 500 miles of range will make it an uphill battle, for sure.

We got a sneak peek at the new GLC back in July, when Mercedes-Benz Group CEO, Ola Källenius said that, “We’re not just introducing a new model – we’re electrifying our top seller.” Back then, we learned that the new GLC EV would have a wheelbase 3.1″ longer than the current ICE-powered model, as well as more head- and leg-room for its occupants and an extra 4.5 cubic feet (for 61.4 total) of cargo space.

Källenius also promised an innovative new 800V electric architecture and the latest battery tech, which will enable the electric GLC to add around 260 km (~160 miles) of WLTP range in just ten minutes thanks to more than 300 kW of charging capability.

SOURCES | IMAGES: kindleauto; Quick_Coyote_7649.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

E-quipment highlight: John Deere TE 4×2 Electric Gator UTV

Published

on

By

E-quipment highlight: John Deere TE 4x2 Electric Gator UTV

For more than 30 years, John Deere’s go-anywhere Gator has been a trusted tool for ranchers, landscapers, and hobby farmers. But the all-electric TE 4×2 version of Big Green’s little truckster rarely gets to steal the spotlight from its ICE-powered 6×4 cousins.

We’re going to change that.

Unlike some of those other UTV brands that just recently entered the electric vehicle game, John Deere introduced its first all-electric Gator way back in 1998.

That OG E-Gator was designed from the ground up for quiet work in places like golf courses, university and hospital campuses, luxury resorts, and corporate grounds – but its go-anywhere design and quiet running made it a favorite of hunters and ranchers, too. Fitted with eight heavy, 12V lead-acid batteries, the ’98 Gator could deliver 6 hours of runtime between overnight charges.

Advertisement – scroll for more content

We haven’t come a long way, baby


TE 4×2 loaded w/ attachments; via John Deere.

If it ain’t broke, don’t fix it. That seems to be the mentality at Deere when it comes to the all-electric Gator. The TE 4×2 hasn’t chased trends or tried to reinvent itself with flashy autonomous tech. Instead, it’s relied solid, work-horsey reasons. Instead, the UTV has leaned on the formula that’s made it a winner for more than 25 years: bulletproof reliability, low maintenance, and a design that just works. Even the added weight of the low-tech batteries compared to more energy-dense li-ion deals makes sense in this application, providing weight over the drive wheels that delivers sure-footed traction on slippery grass or muddy trails.

That’s not to say the Gator hasn’t changed at all over the last few decades. The electrical system has been upgraded to 48V, and its high-capacity, deep-cycle batteries (12 kWh total capacity) give the TE 4×2 dependable, all-day runtime (up to 8 continuous hours) with the benefit of modern chargers, regenerative braking (!), and updated safety features.

The TE 4×2 electric Gator is available from your local Deere dealer with prices starting at $15,699. And, if you’re looking for an endorsement: my personal Gator is easily my favorite thing … maybe I should try to change my Twitter X handle to “GatorJo”?

Let me know what you think of that idea in the comments.

SOURCE | IMAGES: John Deere.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending