Connect with us

Published

on

In this edition of CleanTech Talk, Paul Martin and I discuss Michael Liebreich’s hydrogen ladder. Paul is a working chemical process engineer, and has spent his career building prototypes of biofuel, hydrogen, and chemical processing plants as part of scaling them to full, modularized production systems for clients. Paul’s piece in CleanTechnica on why hydrogen is not suitable as a replacement for natural gas in buildings is a must read.

Liebreich is an entrepreneur, founder of what has become Bloomberg New Energy Finance (BNEF), chairman on multiple boards, has engineering and business degrees, and represented the UK on their skiing team in 1992. He’s had a rich and interesting life, but for the purposes of this pair of podcasts and attendant articles, it’s his iteratively improving hydrogen ladder Paul Martin and I are focusing on.

Regular readers of CleanTechnica will know that I have been assessing hydrogen’s place in the decarbonized economy in the areas of transportation, oil refining, and industry, among others. Paul and I share a strong opinion that “blue” hydrogen, which is sourced from fossil fuels with 10-30 times the mass of CO2 which is theoretically going to be sequestered or used, is a fossil-fuel industry lobbying effort and not a viable climate solution.

Michael Liebreich’s Hydrogen Ladder v4.1, used with permission under Creative Commons license.

Listeners are recommended to keep the hydrogen ladder in front of them as Paul and I talk through aspects of it.

We start with a discussion of one of Paul’s frequently used hashtags, #hopium, which he defines as the drug that is made out of our own hope to overcome our faculties and divert government money to things which aren’t useful. We agree that the fossil fuel industry are masters of PR when it comes to giving false hope to governments and individuals that we can just vacuum CO2 out of the air or out of smokestacks after emitting it, rather than the reality that we leave most fossil fuels unburned and unused.

Paul steps through existing hydrogen production, pointing out that of the 120 million tons used annually today, less than 0.1% could be considered green hydrogen, intentionally cracked from water using renewably generated electricity. All hydrogen today is actually black, at least 30% blacker per unit of energy than the fossil fuel it was made from. For coal, up to 30 kg of CO2 is created for every kg of hydrogen, with one data point suggesting a proposal in Australia to make hydrogen from low-grade coal with 35 kg of CO2 for each kg of hydrogen. For natural gas, it’s up to 10 kg, but there is also methane leakage with its 86x worse than CO2 on 20 years global warming potential. Creation of hydrogen from natural includes an almost equal amount of GHGs in methane leakage, which is typically not counted in the emissions.

We continue with a discussion of ground transportation, where there is no place for hydrogen, in our opinion. Paul draws out the efficiency versus effectiveness argument first. Gasoline isn’t efficient, as perhaps 15% turns into useful energy, but it is effective due to being cheap, easily poured into gas tanks, and easily transported.

Hydrogen is neither efficient or effective for ground transportation. The misleading truths that are used for #hopium are that it’s the most common element in the universe and has excellent energy density for its mass.

The first truth is not helpful, as all hydrogen available to us is tightly chemically coupled with other substances, whether that is fossil fuels or water. It takes a lot of energy to break those bonds.

The second truth is not helpful either. Hydrogen, as the lightest element and lightest gas, has very poor energy density by volume, regardless of whether you compress it to 700 atmospheres, a little over 10,000 pounds per square inch, or chill it to 24 degrees above absolute zero to liquify it. As a gas, it has less than a third the energy density by volume of methane, and as a superchilled liquid, its energy density by volume is only 75% better.

Paul points out that the Toyota Mirai vs Tesla Model 3, otherwise comparable cars, is illustrative in that the Mirai weighs as much as the Tesla, even though it only carries 5.6 kilograms of hydrogen. The tanks weigh hundreds of kilograms. A standard hydrogen cylinder weighs 65 kg and only delivers 0.6 kg of hydrogen, a problem that transportation uses have to overcome with expensive thin-walled aluminum tanks wrapped in carbon fiber. It’s also worth noting that hydrogen cars have less interior and luggage room due to the hydrogen storage and fuel cell component space requirements.

Paul points out the lost mechanical energy of compression. He calculated once that the energy used to compress 5 kg of hydrogen to 700 atmospheres was equivalent to the kinetic potential energy of suspending the car 500 meters in the air, ready to drop. That energy is lost. If superchilled hydrogen were used instead, 40% of the energy in the hydrogen would have to be used to chill it.

The final devil in the details is thermal management. Hydrogen is an interesting gas in that unlike many other gases, it gets warmer as it expands. Anyone used to compressed air cans know that the jet of air comes out cold, but an equivalent jet of hydrogen would come out hot. Even though compressed hydrogen isn’t liquified, in other words, it has to be chilled in its tanks before being pumped into cars, another loss of energy.

This all leads to the common myth that hydrogen cars are quick and convenient to refuel. The reality is shown by Toyota’s entry in the 24-hour enduro Super Taikyu Series in Japan’s Shizuoka Prefecture. They prepped a racing Corolla with a hydrogen combustion engine. It had four huge carbon-fiber tanks in the area where you would normally have back seats. They brought four tractor trailers full of equipment to fuel the car. The car had to spend four hours of the 24 hours of the race refueling. Ineffective, inefficient, and with startling infrastructure requirements.

As Paul says, the devil isn’t hiding in the details, he’s waving his pitchfork in plain sight of anyone willing to see him.

We move on to agreeing in general that hydrogen might have a direct play in long-haul shipping, or at least hasn’t proven itself uncompetitive in that space. I recently assessed Maersk’s methanol drivetrain dual-fuel ships announcement, and 40-day journeys with thousands of tons of fuel are a very hard problem to crack. Maersk has proposed a green methanol manufacturing facility capable of producing enough synthetic green methanol annually to cover half of one trip for one of the eight ships.

For the rest of the first half of the podcast, aviation is in our sights. Paul and I agree that short- and medium-haul aviation — basically all air trips within the boundaries of most continents — are going to be battery electric. Hydrogen has no advantages for those ranges.

And we agree that long-haul aviation is another hard problem. I went deep on long-haul aviation’s global warming contributions and challenges recently, so had the concerns at top of mind. First was the problem of direct carbon dioxide emissions of course, but aviation also has contrail and nitrous oxides emissions problems.

Contrails are water vapor, effectively clouds. Due to the altitude of especially night-flying high-altitude planes, they keep more heat in than they reflect. That’s something that can partially be managed by changing operations, reducing altitude and night-time operations, but there are economic reasons why planes fly high and at night that need to be addressed with economic incentives.

Nitrous oxides are trickier. Any fuel burned in oxygen produces nitrous oxides with a bunch of the nitrogen from the air, which is, after all, 78% nitrogen. Nitrogen combined with oxygen in the form of N20, nitrous oxide or laughing gas, has a global warming potential of 265 times that of CO2, and persists in the atmosphere a long time.

Another form of nitrous oxide, NO2 or nitrous dioxide, is the chemical precursor to smog, causing asthma and other heart lung problems. For those following along, yes, if you have a natural gas stove or furnace in your home, it’s also putting NO2 into your home’s air along with carbon monoxide, which you need a detector for if you don’t have it. All the more reason to electrify to induction stove tops and heat pumps as your appliances age out.

Paul’s perspective is that hydrogen for long-haul aviation has multiple problems. The first is that it can’t be stored as a pressurized gas in airplanes due to the increasing loss of atmospheric pressure and bulk as planes ascend to 30,000 ft. The second is that even chilled, it’s much less dense by volume than kerosene, so it would have to be stored in the fuselage. The third is that fuel cells are bulky for energy output of sufficient electricity, so would also have to be within the fuselage, and fuel cells give off a lot of heat. So that means either jets lose a fair amount of passenger and luggage storage, or get a lot bigger and heavier, even before the cooling and venting requirements for the fuel cell heat. That makes the economics of jet travel problematic, which might be just fine, as it arguably should be more expensive than it is.

However, this means that it would be hydrogen jet engines that would be used if hydrogen were to be used directly as a fuel. And burning hydrogen in a jet engine will produce a lot of water vapor, hence the same contrails, and nitrous oxides, hence the high global warming potential. Hydrogen would only deal with two-thirds of the problem.

Paul and I agree that biofuels for hard-to-service transportation modes such as long-haul shipping and aviation, along with operational changes and reduced use, are likely the best we can do until we achieve a battery as much better than lithium-ion as lithium-ion is than lead acid, and that took a century.

But we’ve had biofuels certified for aviation use since 2011, and they just aren’t being used. They are more expensive, despite being much lower CO2 emissions cradle-to-grave than kerosene. Once again, negative externalities have to be priced.

The next half of the podcast discussion gets into places where hydrogen actually has a place in the sun, but makes it clear that hydrogen is actually a decarbonization problem, not a decarbonization solution.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

I found this cheap Chinese e-cargo trike that hauls more than your car!

Published

on

By

I found this cheap Chinese e-cargo trike that hauls more than your car!

If you’ve ever wondered what happens when you combine a fruit cart, a cargo bike, and a Piaggio Ape all in one vehicle, now you’ve got your answer. I submit, for your approval, this week’s feature for the Awesomely Weird Alibaba Electric Vehicle of the Week column – and it’s a beautiful doozie.

Feast your eyes on this salad slinging, coleslaw cruising, tuber taxiing produce chariot!

I think this electric vegetable trike might finally scratch the itch long felt by many of my readers. It seems every time I cover an electric trike, even the really cool ones, I always get commenters poo-poo-ing it for having two wheels in the rear instead of two wheels in the front. Well, here you go, folks!

Designed with two front wheels for maximum stability, this trike keeps your cucumbers in check through every corner. Because trust me, you don’t want to hit a pothole and suddenly be juggling peaches like you’re in Cirque du Soleil: Farmers Market Edition.

Advertisement – scroll for more content

To avoid the extra cost of designing a linked steering system for a pair of front wheels, the engineers who brought this salad shuttle to life simply side-stepped that complexity altogether by steering the entire fixed front end. I’ve got articulating electric tractors that steer like this, and so if it works for a several-ton work machine, it should work for a couple hundred pounds of cargo bike.

Featuring a giant cargo bed up front with four cascading fruit baskets set up for roadside sales, this cargo bike is something of a blank slate. Sure, you could monetize grandma’s vegetable garden, or you could fill it with your own ideas and concoctions. Our exceedingly talented graphics wizard sees it as the perfect coffee and pastry e-bike for my new startup, The Handlebarista, and I’m not one to argue. Basically, the sky is the limit with a blank slate bike like this!

Sure, the quality doesn’t quite match something like a fancy Tern cargo bike. The rim brakes aren’t exactly confidence-inspiring, but at least there are three of them. And if they should all give out, or just not quite slow you down enough to avoid that quickly approaching brick wall, then at least you’ve got a couple hundred pounds of tomatoes as a tasty crumple zone.

The electrical system does seem a bit underpowered. With a 36V battery and a 250W motor, I don’t know if one-third of a horsepower is enough to haul a full load to the local farmer’s market. But I guess if the weight is a bit much for the little motor, you could always do some snacking along the way. On the other hand, all the pictures seem to show a non-electric version. So if this cart is presumably mobile on pedal power alone, then that extra motor assist, however small, is going to feel like a very welcome guest.

The $950 price is presumably for the electric version, since that’s what’s in the title of the listing, though I wouldn’t get too excited just yet. I’ve bought a LOT of stuff on Alibaba, including many electric vehicles, and the too-good-to-be-true price is always exactly that. In my experience, you can multiply the Alibaba price by 3-4x to get the actual landed price for things like these. Even so, $3,000-$4,000 wouldn’t be a terrible price, considering a lot of electric trikes stateside already cost that much and don’t even come with a quad-set of vegetable baskets on board!

I should also put my normal caveat in here about not actually buying one of these. Please, please don’t try to buy one of these awesome cargo e-trikes. This is a silly, tongue-in-cheek weekend column where I scour the ever-entertaining underbelly of China’s massive e-commerce site Alibaba in search of fun, quirky, and just plain awesomely weird electric vehicles. While I’ve successfully bought several fun things on the platform, I’ve also gotten scammed more than once, so this is not for the timid or the tight-budgeted among us.

That isn’t to say that some of my more stubborn readers haven’t followed in my footsteps before, ignoring my advice and setting out on their own wild journey. But please don’t be the one who risks it all and gets nothing in return. Don’t say I didn’t warn you; this is the warning.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

OPEC+ members agree to larger-than-expected oil production hike in August

Published

on

By

OPEC+ members agree to larger-than-expected oil production hike in August

The OPEC logo is displayed on a mobile phone screen in front of a computer screen displaying OPEC icons in Ankara, Turkey, on June 25, 2024.

Anadolu | Anadolu | Getty Images

Eight oil-producing nations of the OPEC+ alliance agreed on Saturday to increase their collective crude production by 548,000 barrels per day, as they continue to unwind a set of voluntary supply cuts.

This subset of the alliance — comprising heavyweight producers Russia and Saudi Arabia, alongside Algeria, Iraq, Kazakhstan, Kuwait, Oman and the United Arab Emirates — met digitally earlier in the day. They had been expected to increase their output by a smaller 411,000 barrels per day.

In a statement, the OPEC Secretariat attributed the countries’ decision to raise August daily output by 548,000 barrels to “a steady global economic outlook and current healthy market fundamentals, as reflected in the low oil inventories.”

The eight producers have been implementing two sets of voluntary production cuts outside of the broader OPEC+ coalition’s formal policy.

One, totaling 1.66 million barrels per day, stays in effect until the end of next year.

Under the second strategy, the countries reduced their production by an additional 2.2 million barrels per day until the end of the first quarter.

They initially set out to boost their production by 137,000 barrels per day every month until September 2026, but only sustained that pace in April. The group then tripled the hike to 411,000 barrels per day in each of May, June, and July — and is further accelerating the pace of their increases in August.

Oil prices were briefly boosted in recent weeks by the seasonal summer spike in demand and the 12-day war between Israel and Iran, which threatened both Tehran’s supplies and raised concerns over potential disruptions of supplies transported through the key Strait of Hormuz.

At the end of the Friday session, oil futures settled at $68.30 per barrel for the September-expiration Ice Brent contract and at $66.50 per barrel for front month-August Nymex U.S. West Texas Intermediate crude.

Continue Reading

Environment

Podcast: Trump/GOP go after EV/solar, Tesla, Ford, GM EV sales, Electrek Formula Sun, and more

Published

on

By

Podcast: Trump/GOP go after EV/solar, Tesla, Ford, GM EV sales, Electrek Formula Sun, and more

In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss Trump’s Big Beautiful bill becoming law and going after EVs and solar, Tesla, Ford, and GM EV sales, Electrek Formula Sun, and more

Today’s episode is brought to you by Bosch Mobility Aftermarket—A global leader and trusted provider of automotive aftermarket parts. To celebrate Amazon Prime Day July 8th through 11th, Bosch Mobility is offering exclusive savings on must-have auto parts and tools. Learn more here.

The show is live every Friday at 4 p.m. ET on Electrek’s YouTube channel.

As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.

Advertisement – scroll for more content

After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:

We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.

Here are a few of the articles that we will discuss during the podcast:

Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET:

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending