Connect with us

Published

on

Aerial photos of the National Renewable Energy Laboratory’s (NREL) Flatirons Campus near Boulder, Colorado. Photographed from an Unmanned Aerial Vehicle (UAV). (Photo by Joshua Bauer / NREL)

Imagine an electric grid powered by clean, renewable energy. Now imagine that this grid provides all the comfort and convenience consumers have come to expect as well as grid reliability and resiliency services that are similar to—or better than—conventional plants. That is the promise of the FlexPower project.

With support from the U.S. Department of Energy Grid Modernization Laboratory Consortium, FlexPower brings National Renewable Energy Laboratory (NREL) researchers together with other National Laboratories to develop a colocated variable hybrid generation power plant enhanced with energy storage at NREL’s Flatirons Campus. Participants include the Idaho National Laboratory (INL) and Sandia National Laboratories (Sandia).

As renewables displace conventional generation, hybrid renewable power plants combined with energy storage can transform variable resources such as wind and solar photovoltaics (PV) into fully dispatchable and flexible energy sources. These hybridized power plants will be capable of operating in day-ahead and real-time energy markets and providing essential reliability and resiliency services to the grid.

Rethinking Renewables

“This research will help accelerate the adoption of utility-scale variable wind and PV resources by demonstrating how hybridization can smooth the transition to clean energy,” said NREL Chief Engineer Vahan Gevorgian. “For the power grid to economically and reliably integrate large amounts of variable renewable generation, it will require robust energy storage capabilities and a rethinking of the value renewable energy assets bring to the grid.”

To support this transformation, researchers will test a variety of energy storage systems, including pumped storage hydropower, battery, hydrogen, flow battery, kinetic, and ultracapacitor energy storage. In addition, the project will focus on advanced control strategies and resource forecast techniques. Sophisticated controls can improve the dispatchability and availability of variable generation by taking advantage of the complementary nature of wind and PV resources and increasing capacity factors for renewable projects with minimum or, in some cases, no additional transmission buildup. Improved forecasting allows hybrid plants to participate in energy and ancillary services markets in the same way conventional generation plants do.

By combining generation, storage, advanced controls, and improved forecasting in hybrid plants, operators can achieve economies of scale by sharing infrastructure as well as siting and permitting costs. These plants can also provide the full spectrum of existing essential reliability services as well as new, evolving grid reliability services. For example, hybrid plants can provide self-black starts as well as power system black starts, can operate in islanded mode, and can participate in power system restoration schemes. And hybrid plants are scalable, ranging from small microgrids to large, interconnected power systems.

The FlexPower project is of great interest to a wide range of stakeholders, including regulators, reliability organizations, system operators, utilities, plant owners and operators, equipment vendors, and island power system owners and operators.

“Hybrid renewable energy plants could introduce the national and global energy sectors to a new and potentially disruptive class of power systems,” Gevorgian said. “The FlexPower project will demonstrate the value of renewable energy assets and suggest strategies for using them more efficiently to reduce curtailment, increase energy production, and smooth variability. The result could be high-value grid services and a more secure and resilient power supply.”

Sharing the Findings

The FlexPower research results will be freely accessible to all stakeholders in the form of public domain information and other assets. Specifically, stakeholders will have access to the FlexPower controller architecture; control codes developed by NREL, INL, and Sandia for industrial control platforms; hybridization-potential assessment maps and databases; results of regional impacts studies; and reports, publications, regional webinars, conference presentations, and other outreach materials.

NREL’s Flatirons Campus grid-scale hybrid system will provide a test bed for companies and researchers to validate and demonstrate their hybrid plant concepts and strategies. The fully operational multi-MW hybrid power plant will be capable of demonstrating all types of dispatchability, reliability, and resiliency services. It will also provide a grid-scale test bed that offers hybrid system demonstrations for a range of stakeholders, opportunities for control and equipment vendors to test new hybrid controls and hardware, a venue for workforce education and new international collaborations, and a validation platform for standardizing hybrid technologies.

FlexPower was funded in part by U.S. Department of Energy’s Wind Energy Technologies OfficeWater Power Technologies OfficeHydrogen and Fuel Cell Technologies Office, and the Office of Electricity.

Article courtesy of NREL

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

MINI x Deus Ex Machina Skeg electric concept lightens the mood

Published

on

By

MINI x Deus Ex Machina Skeg electric concept lightens the mood

MINI has partnered with lifestyle brand, Deus Ex Machina, to develop this. It’s called the Skeg, and it’s a high-performance, racing-inspired electric concept car that’s sure to lighten the mood – by shedding fully 15% of its mass in the quest for speed.

One of a pair of exclusive, one-off concepts based on MINI’s John Cooper Works cars. The Deus Ex Machina Skeg celebrates MINI’s storied racing history with what the company calls, “a clean, minimal, and quiet rebellion,” that draws on materials, technologies, and philosophies from the world of surfing.

The electric MINI JCW Skeg is stripped to its essentials, with much of the steel and aluminum bits replaced with lightweight fiberglass to maximize acceleration while driving the minimalist aesthetic home. The end result weighs 15% less than the standard car – but makes the same stout 190 kW (258 hp) as the production car.

Surf’s up


MINI Skeg concept interior; via BMW.

The interior is stripped back to the barest essentials, reflecting BMW’s vision of a surf culture that prioritizes function over form. MINI claims the end result resembles a mobile surf shop, with fiberglass trays for wetsuits, specially shaped bins, neoprene seats, and other touches that “bring the surf culture into the interior.”

Advertisement – scroll for more content

For their part, the BMW and MINI styling team seems pretty proud of its minimalistic electric endeavor. “In this extraordinary collaboration … every single detail has been crafted with artisanal precision and expertise,” says Holger Hampf, Head of MINI Design. “This has resulted in unique characters that are clearly perceived as belonging together through their distinctive design language and use of graphics.”

The concept retains the production version’s 54.2 kWh li-ion battery pack, up to 250 of WLTP range with the production aero kit, sprints from 0-100 km (62 mph) in just 5.9 seconds. With 15% less mass, though, that should jump to more than 255 miles, with 0-60 times dropping below 5.5 seconds.

I dig it – but I’d skip the surf bits and just appreciate the raw composite, minimalist interior look for what it is. Take a look at the image gallery, below, then let us know what you think of MINI’s Skeg concept in the comments.


SOURCE | IMAGES: BMW MINI.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Published

on

By

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Veteran marine and industrial power solutions company Volvo Penta has joined forces with energy solutions provider e-power to build battery energy storage systems (BESS). Volvo Penta’s battery systems for energy storage will power BESS units built by e-power that can be catered to a range of applications, most notably construction rental clients like Boels Rentals in Europe.

Volvo Penta is a provider of sustainable power solutions that currently serves land and sea applications under the Volvo Group umbrella. As more and more of the world goes all-electric, the global manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

Nearly 100 years later, Volvo Penta remains an industry leader in marine propulsion systems and industrial engines. As more and more of the world goes all-electric, the Swedish manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

For example, all Volvo Penta diesel engines now run on hydro-treated vegetable oil (HVO), reducing well-to-wheel emissions by up to 90% across the marine and industrial power industries. On the zero-emissions side, Volvo Penta has expressed its dedication to fossil-free power solutions, including battery electric components to serve heavy-duty applications such as terminal tractors, forklifts, drill rigs, and feed mixers, to name a few.

Advertisement – scroll for more content

To leverage its battery electric value chain, Volvo Penta has also ventured into battery systems for energy storage (or BESS subsystems). These energy-dense, purpose-built BESS subsystems can provide portable, sustainable energy for all-electric charging and reduce grid dependency.

Volvo battery
Source: Volvo Penta

Volvo Penta to deploy battery systems for energy storage

Volvo Penta recently announced a strategic partnership with e-power, a Belgian power solutions provider. Together, Volvo Penta and e-power will develop a scalable Battery Energy Storage System (BESS) for Boels Rental.

The collaboration continues a long-standing partnership between all three companies. Boels – one of the largest construction rental companies is a long-time customer of e-power generators that utilize Volvo Penta engines. As the company shifts toward electrification and sustainability, it will again turn to those companies to deliver reliable performance.

Volvo Penta’s BESS subsystem comprises battery packs, a Battery Management System (BMS), DC/DC converters, and thermal management, combining to offer a compact, high-density, and transport-friendly solution optimized for rental operations. The company shared that this BESS design is integration-ready, enabling other OEMs like e-power to adapt and scale systems to customer-specific needs. Per e-power business support director, Jens Fets:

We’ve built our reputation on reliability and efficient power systems. Working again with Volvo Penta, this time on battery energy storage, allows us to meet the growing demand for energy in a silent, low-emissions, compact and mobile design—especially in rental applications.

The deployment of these new battery energy storage systems will help Boels cater to its customers’ growing demand for clean, silent, and mobile energy solutions in construction and other industrial applications. 

Aside from being more quickly adaptable to customer needs, Volvo Penta says its BESS architecture marks an overall shift in rental power systems. This is welcome news for all who support a cleaner, more sustainable future across all industries.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

Published

on

By

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

That didn’t take long! Just a few hours after Mercedes revealed the screen-heavy interior of its upcoming 2026 GLC EV, photos of the new crossover’s exterior – and that controversial grille! – leaked on Instagram and Reddit. We’ve got them here.

Two days ahead of the GLC EV’s officially schedule global debut, images that reportedly show the new 2026 Mercedes undisguised have leaked on Instagram and Reddit. They show the blocky new light-up grille on the nose of a very smooth, jellybean-like crossover shape that, despite Mercedes’ insistence that it’s moving away from the EQ series’ design language, looks an awful lot like an EQ Mercedes.

Check out the leaked images from kindleauto’s Instagram account, below, and see if you agree with that assessment.

If you need to see more before you feel comfortable commenting on the new SUV’s looks, there’s a few more angles over on the r/mercedes_benz subreddit.

Advertisement – scroll for more content

Leaked exterior pictures of the upcoming GLC EV
byu/Quick_Coyote_7649 inmercedes_benz

As with everything else on the internet, take those unofficial images with a grain of salt and maybe wait until the GLC EV’s official reveal in a few days’ time before casting your final vote on the new look – but there’s very little reason to believe the new Mercedes will look terribly different from what you see here.

Will the new grille and tech-forward interior with its massive, 39″ screen and MB.OS software be enough to turn the tide for Mercedes-Benz, enabling it to finally gain some traction in the electric crossover market? That remains to be seen, but the recently updated Tesla Model Y and crisply-styled new BMW iX3 with its 500 miles of range will make it an uphill battle, for sure.

We got a sneak peek at the new GLC back in July, when Mercedes-Benz Group CEO, Ola Källenius said that, “We’re not just introducing a new model – we’re electrifying our top seller.” Back then, we learned that the new GLC EV would have a wheelbase 3.1″ longer than the current ICE-powered model, as well as more head- and leg-room for its occupants and an extra 4.5 cubic feet (for 61.4 total) of cargo space.

Källenius also promised an innovative new 800V electric architecture and the latest battery tech, which will enable the electric GLC to add around 260 km (~160 miles) of WLTP range in just ten minutes thanks to more than 300 kW of charging capability.

SOURCES | IMAGES: kindleauto; Quick_Coyote_7649.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending