Connect with us

Published

on

There are three fossil fuels we must stop burning if we are to save our planet: coal, oil, and methane (aka “natural”) gas. Coal is declining precipitously. Scientists think we hit peak coal in 2013, and American use of coal has fallen by over 50% in the last 10 years (though, we need to quickly nail this coffin closed considering how dirty and polluting coal is). Oil is seeing the writing on the wall as major automakers commit to electric vehicles. Many think 2019 may have been the year we hit peak oil, and EVs are expected to make the internal combustion engine a “historical technology” by 2040. The faster we historicize petroleum, the better, so please buy that electric car or e-bike today. 

Natural gas (aka methane) now comes into sight as the next fossil fuel we need to banish in the quest to rescue ourselves from the most catastrophic climate catastrophe. Burning methane is currently responsible for nearly 25% of all carbon emissions in the US, and its use is growing. Methane is also deeply embedded in many of our homes, and this will make it a challenge to extricate. We aren’t anywhere near hitting peak natural gas usage on our current trajectory.

But, as of recently, some American cities, mostly in California, have recognized the need to eliminate gas and slowly get us off the fossil sauce. In 2019, these leading cities did something that had never been done in the history of our species — they started banning future use of methane in new construction. The idea has been to stop digging a hole that we have to quickly climb out of, so they legislated that no new homes or buildings should be built with methane hookups. This will avoid costly retrofits later. The city-led ban began in California, has reached over 50 cities, and is spreading up the West Coast like a good kind of wildfire. 

Enter “Renewable” Natural Gas

Any entrenched industry will fight with all its might not to disrupt revenue streams, regardless of the effects of their products on humanity (see: oxycontin and tobacco). So, it is to be expected that methane peddlers will spend the next crucial decades resisting efforts to ban their product. They’ll use lots of arguments to slow humanity’s inexorable push towards a fossil fuel future. The most ingenious/insidious one that we must quickly debunk is that their carbon polluting fuel is actually clean or has the potential to become so.

Enter, stage right, “renewable natural gas,” or RNG, a brilliant buzzword for a product that companies are counting on consumers to believe in, to continue with business mostly as usual. Renewable natural gas is methane that comes from biological sources like human and cow sewage or landfills. It differs from current methane, which is fracked from the earth’s interior, some of which escapes through pipes, while the rest is burned, adding to our dangerous warming blanket. RNG harnesses methane being created anyway and thus, doesn’t add new layers to our greenhouse problem. A group of nonprofits in my region just released an in-depth look at renewable natural gas and the numbers aren’t good. 

How to Make Renewable Natural Gas — Anaerobic Digestion and Gasification

Before we can examine how much RNG our society will be able to realistically produce, let’s briefly talk about the two ways to make renewable natural gas. Even though, as we’ll shortly see, RNG won’t come remotely close to meeting our current gas demand, it still has the potential to be an important, lower-carbon tool in reducing the emissions of hard-to-decarbonize applications (like industry). 

The first way to make RNG is through anaerobic digestion technology. This is a process where bacteria eat waste in an atmosphere that doesn’t contain oxygen (anaerobic). Sewage treatment plants and pig farms use this process. They gather fecal matter, bring bacteria to a specific temperature, do a lot of other magic in pipes, and out comes methane gas. Landfills are another source of this methane as wasted food and other fun stuff are eaten by bacteria underground and methane is created as a byproduct.

The second way to make RNG is through thermal gasification, which “uses energy to turn agriculture and commercial forest harvest residues” into something called Syngas. Syngas can then be converted to methane with more processing. According to a large survey by the State of Oregon, “There are currently no commercial-scale thermal gasification plants in the United States that convert biomass into methane. The existing plants produce syngas, which is burned and used to generate heat and electricity.” So thermal gasification is a potentially important, but unproven technology that should not make us believe that we can simply keep burning gas in our homes. 

How Much Renewable Natural Gas Could We Conceivably Produce?

In the 2018 Oregon study cited above, (which had many gas industry officials involved in its writing) researchers looked at what we could optimistically hope for from RNG production. The numbers aren’t good. The potential for anaerobic digestion is 4.6% while the potential for thermal gasification is 17.5% of current natural gas usage in the state. So RNG could potentially cover 20% of the methane gas we use today, assuming significant investments in technology and distribution systems that do not exist today – in other words and not anytime soon.Think about it. We could work our tushies off over the next couple, crucial decades, to try to decarbonize natural gas pipes, while the planet is heating up and wildfire smoke is crossing our country coast to coast, and after crucial time and work, we’d still be using 80% fracked, fossil natural gas. If that’s not backing the wrong horse, then I don’t know what is. 

Oregon’s numbers are similar to national numbers. Another study found that, nationally, we could hope for about 16% renewable natural gas, and again, this is far in the future and only if we invest heavily in RNG.

Compare that to electricity as a fuel, and you’ll see a stark difference. Right now, the national electric grid gets 20% of its power from renewables and 20% from nuclear, making electricity 40% carbon free. Biden wants to get to 100% by 2035. Oregon recently passed a law to get to 80% clean electricity by 2030 and 100% by 2040. Wind and solar are carbon neutral and are the cheapest and most installed forms of new energy generation. We have the roadmap and the tools to completely decarbonize electricity over the next 10–20 years and are doing so faster than anyone expected. Clean electricity is real, proven, happening and the horse we should be backing. 

Electrifying our house and capping our natural gas pipe was one of the best things my family has done for the climate.

Other problems with renewable natural gas

There are other significant problems with renewable natural gas which are highlighted in depth in this brilliant article by Laura Feinstein and Eric de Place. Renewable natural gas isn’t even zero carbon. It is true that it often comes from existing sources of methane, but often those sources of methane could be avoided. Take landfills for example. When we toss food scraps into landfills it creates methane. We could capture that methane to make renewable natural gas or we could compost the food scraps like many cities and nations do, and avoid making that methane in the first place and get the benefits of richer, healthier soil in our communities. Relying on renewable natural gas could thus lock us into wasteful, inefficient practices when other options exist. 

Another significant problem is that RNG costs a lot to make. A million BTUs of methane gas currently costs $3. The median cost for the equivalent amount of RNG is about 6 times that, at $18. Yipes! Imagine telling consumers that their gas bills are going to sextuple, and you’ll start to see how viable RNG is as a long term solution. 

Scratch the surface, and it’s easy to see how RNG meets the classic definition of a red herring; “something that misleads and distracts us from a relevant or important question.” There won’t be very much of it, and it’s going to be very expensive. Let’s not get sidetracked from real climate solutions. When our local methane suppliers use the word “renewable” to keep pumping fossils into our homes, we need to understand that this is at best a stalling tactic and a greenwash to distract from the dangers of methane gas. Let’s stay focused on more realistic solutions for heating our homes and addressing the climate crisis like electrification.

I’ll be co-hosting a free webinar with Electrify Now on “The Future of Natural Gas” on Wednesday, September 22. Register and get more information here

Check out this in-depth report on methane gas released by a coalition of 62 organizations recently. 

Related: Natural Gas Leaks Deadly For Trees (Video)

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Day 1 of the Electrek Formula Sun Grand Prix 2025 [Gallery]

Published

on

By

Day 1 of the Electrek Formula Sun Grand Prix 2025 [Gallery]

Today was the official start of racing at the Electrek Formula Sun Grand Prix 2025! There was a tremendous energy (and heat) on the ground at NCM Motorsports Park as nearly a dozen teams took to the track. Currently, as of writing, Stanford is ranked #1 in the SOV (Single-Occupant Vehicle) class with 68 registered laps. However, the fastest lap so far belongs to UC Berkeley, which clocked a 4:45 on the 3.15-mile track. That’s an average speed of just under 40 mph on nothing but solar energy. Not bad!

In the MOV (Multi-Occupant Vehicle) class, Polytechnique Montréal is narrowly ahead of Appalachian State by just 4 laps. At last year’s formula sun race, Polytechnique Montréal took first place overall in this class, and the team hopes to repeat that success. It’s still too early for prediction though, and anything can happen between now and the final day of racing on Saturday.

Congrats to the teams that made it on track today. We look forward to seeing even more out there tomorrow. In the meantime, here are some shots from today via the event’s wonderful photographer Cora Kennedy.

Stay tuned for more!

FTC: We use income earning auto affiliate links. More.

Stay up to date with the latest content by subscribing to Electrek on Google News.

You’re reading Electrek— experts who break news about Tesla, electric vehicles, and green energy, day after day. Be sure to check out our homepage for all the latest news, and follow Electrek on Twitter, Facebook, and LinkedIn to stay in the loop. Don’t know where to start? Check out our YouTube channel for the latest reviews.

Continue Reading

Environment

Tesla sold 5,000 Cybertrucks Q2, Optimus is in chaos, plus: the Infinity Train!

Published

on

By

Tesla sold 5,000 Cybertrucks Q2, Optimus is in chaos, plus: the Infinity Train!

The numbers are in and they are all bad for Tesla fans – the company sold just 5,000 Cybertruck models in Q4 of 2025, and built some 30% more “other” vehicles than it delivered. It just gets worse and worse, on today’s tension-building episode of Quick Charge!

We’ve also got day 1 coverage of the 2025 Electrek Formula Sun Grand Prix, reports that the Tesla Optimus program is in chaos after its chief engineer jumps ship, and a look ahead at the fresh new Hyundai IONIQ 2 set to bow early next year, thanks to some battery specs from the Kia EV2.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Advertisement – scroll for more content

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla launches Oasis Supercharger with solar farm and off-grid batteries

Published

on

By

Tesla launches Oasis Supercharger with solar farm and off-grid batteries

Tesla has launched its new Oasis Supercharger, the long-promised EV charging station of the future, with a solar farm and off-grid batteries.

Early in the deployment of the Supercharger network, Tesla promised to add solar arrays and batteries to the Supercharger stations, and CEO Elon Musk even said that most stations would be able to operate off-grid.

While Tesla did add solar and batteries to a few stations, the vast majority of them don’t have their own power system or have only minimal solar canopies.

Back in 2016, I asked Musk about this, and he said that it would now happen as Tesla had the “pieces now in place” with Supercharger V3, Powerpack V2, and SolarCity:

Advertisement – scroll for more content

All of these pieces have been in place for years, and Tesla has now discontinued the Powerpack in favor of the Megapack. The Supercharger network is also transitioning to V4 stations.

Yet, solar and battery deployment haven’t accelerated much in the decade since Musk made that comment, but it is finally happening.

Last year, Tesla announced a new project called ‘Oasis’, which consists of a new model Supercharger station with a solar farm and battery storage enabling off-grid operations in Lost Hills, California.

Tesla has now unveiled the project and turned on most of the Supercharger stalls:

The project consists of 168 chargers, with half of them currently operational, making it one of the largest Supercharger stations in the world. However, that’s not even the most notable aspect of it.

The station is equipped with 11 MW of ground-mounted solar panels and canopies, spanning 30 acres of land, and 10 Tesla Megapacks with a total energy storage capacity of 39 MWh.

It can be operated off-grid, which is the case right now, according to Tesla.

With off-grid operations, Tesla was about to bring 84 stalls online just in time for the Fourth of July travel weekend. The rest of the stalls and a lounge are going to open later this year.

Electrek’s Take

This is awesome. A bit late, but awesome. This is what charging stations should be like: fully powered by renewable energy.

Unfortunately, it will be much harder to open those stations in the future due to legislation that Trump and the Republican Party have just passed, which removes incentives for solar and energy storage, adds taxes on them, and removes incentives to build batteries – all things that have helped Tesla considerably over the last few years.

The US is likely going to have a few tough years for EV adoption and renewable energy deployment.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending