Connect with us

Published

on

There are three fossil fuels we must stop burning if we are to save our planet: coal, oil, and methane (aka “natural”) gas. Coal is declining precipitously. Scientists think we hit peak coal in 2013, and American use of coal has fallen by over 50% in the last 10 years (though, we need to quickly nail this coffin closed considering how dirty and polluting coal is). Oil is seeing the writing on the wall as major automakers commit to electric vehicles. Many think 2019 may have been the year we hit peak oil, and EVs are expected to make the internal combustion engine a “historical technology” by 2040. The faster we historicize petroleum, the better, so please buy that electric car or e-bike today. 

Natural gas (aka methane) now comes into sight as the next fossil fuel we need to banish in the quest to rescue ourselves from the most catastrophic climate catastrophe. Burning methane is currently responsible for nearly 25% of all carbon emissions in the US, and its use is growing. Methane is also deeply embedded in many of our homes, and this will make it a challenge to extricate. We aren’t anywhere near hitting peak natural gas usage on our current trajectory.

But, as of recently, some American cities, mostly in California, have recognized the need to eliminate gas and slowly get us off the fossil sauce. In 2019, these leading cities did something that had never been done in the history of our species — they started banning future use of methane in new construction. The idea has been to stop digging a hole that we have to quickly climb out of, so they legislated that no new homes or buildings should be built with methane hookups. This will avoid costly retrofits later. The city-led ban began in California, has reached over 50 cities, and is spreading up the West Coast like a good kind of wildfire. 

Enter “Renewable” Natural Gas

Any entrenched industry will fight with all its might not to disrupt revenue streams, regardless of the effects of their products on humanity (see: oxycontin and tobacco). So, it is to be expected that methane peddlers will spend the next crucial decades resisting efforts to ban their product. They’ll use lots of arguments to slow humanity’s inexorable push towards a fossil fuel future. The most ingenious/insidious one that we must quickly debunk is that their carbon polluting fuel is actually clean or has the potential to become so.

Enter, stage right, “renewable natural gas,” or RNG, a brilliant buzzword for a product that companies are counting on consumers to believe in, to continue with business mostly as usual. Renewable natural gas is methane that comes from biological sources like human and cow sewage or landfills. It differs from current methane, which is fracked from the earth’s interior, some of which escapes through pipes, while the rest is burned, adding to our dangerous warming blanket. RNG harnesses methane being created anyway and thus, doesn’t add new layers to our greenhouse problem. A group of nonprofits in my region just released an in-depth look at renewable natural gas and the numbers aren’t good. 

How to Make Renewable Natural Gas — Anaerobic Digestion and Gasification

Before we can examine how much RNG our society will be able to realistically produce, let’s briefly talk about the two ways to make renewable natural gas. Even though, as we’ll shortly see, RNG won’t come remotely close to meeting our current gas demand, it still has the potential to be an important, lower-carbon tool in reducing the emissions of hard-to-decarbonize applications (like industry). 

The first way to make RNG is through anaerobic digestion technology. This is a process where bacteria eat waste in an atmosphere that doesn’t contain oxygen (anaerobic). Sewage treatment plants and pig farms use this process. They gather fecal matter, bring bacteria to a specific temperature, do a lot of other magic in pipes, and out comes methane gas. Landfills are another source of this methane as wasted food and other fun stuff are eaten by bacteria underground and methane is created as a byproduct.

The second way to make RNG is through thermal gasification, which “uses energy to turn agriculture and commercial forest harvest residues” into something called Syngas. Syngas can then be converted to methane with more processing. According to a large survey by the State of Oregon, “There are currently no commercial-scale thermal gasification plants in the United States that convert biomass into methane. The existing plants produce syngas, which is burned and used to generate heat and electricity.” So thermal gasification is a potentially important, but unproven technology that should not make us believe that we can simply keep burning gas in our homes. 

How Much Renewable Natural Gas Could We Conceivably Produce?

In the 2018 Oregon study cited above, (which had many gas industry officials involved in its writing) researchers looked at what we could optimistically hope for from RNG production. The numbers aren’t good. The potential for anaerobic digestion is 4.6% while the potential for thermal gasification is 17.5% of current natural gas usage in the state. So RNG could potentially cover 20% of the methane gas we use today, assuming significant investments in technology and distribution systems that do not exist today – in other words and not anytime soon.Think about it. We could work our tushies off over the next couple, crucial decades, to try to decarbonize natural gas pipes, while the planet is heating up and wildfire smoke is crossing our country coast to coast, and after crucial time and work, we’d still be using 80% fracked, fossil natural gas. If that’s not backing the wrong horse, then I don’t know what is. 

Oregon’s numbers are similar to national numbers. Another study found that, nationally, we could hope for about 16% renewable natural gas, and again, this is far in the future and only if we invest heavily in RNG.

Compare that to electricity as a fuel, and you’ll see a stark difference. Right now, the national electric grid gets 20% of its power from renewables and 20% from nuclear, making electricity 40% carbon free. Biden wants to get to 100% by 2035. Oregon recently passed a law to get to 80% clean electricity by 2030 and 100% by 2040. Wind and solar are carbon neutral and are the cheapest and most installed forms of new energy generation. We have the roadmap and the tools to completely decarbonize electricity over the next 10–20 years and are doing so faster than anyone expected. Clean electricity is real, proven, happening and the horse we should be backing. 

Electrifying our house and capping our natural gas pipe was one of the best things my family has done for the climate.

Other problems with renewable natural gas

There are other significant problems with renewable natural gas which are highlighted in depth in this brilliant article by Laura Feinstein and Eric de Place. Renewable natural gas isn’t even zero carbon. It is true that it often comes from existing sources of methane, but often those sources of methane could be avoided. Take landfills for example. When we toss food scraps into landfills it creates methane. We could capture that methane to make renewable natural gas or we could compost the food scraps like many cities and nations do, and avoid making that methane in the first place and get the benefits of richer, healthier soil in our communities. Relying on renewable natural gas could thus lock us into wasteful, inefficient practices when other options exist. 

Another significant problem is that RNG costs a lot to make. A million BTUs of methane gas currently costs $3. The median cost for the equivalent amount of RNG is about 6 times that, at $18. Yipes! Imagine telling consumers that their gas bills are going to sextuple, and you’ll start to see how viable RNG is as a long term solution. 

Scratch the surface, and it’s easy to see how RNG meets the classic definition of a red herring; “something that misleads and distracts us from a relevant or important question.” There won’t be very much of it, and it’s going to be very expensive. Let’s not get sidetracked from real climate solutions. When our local methane suppliers use the word “renewable” to keep pumping fossils into our homes, we need to understand that this is at best a stalling tactic and a greenwash to distract from the dangers of methane gas. Let’s stay focused on more realistic solutions for heating our homes and addressing the climate crisis like electrification.

I’ll be co-hosting a free webinar with Electrify Now on “The Future of Natural Gas” on Wednesday, September 22. Register and get more information here

Check out this in-depth report on methane gas released by a coalition of 62 organizations recently. 

Related: Natural Gas Leaks Deadly For Trees (Video)

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Delhi-ghtful! India mulls 2035 ICE ban, blocks fuel sales to older vehicles

Published

on

By

Delhi-ghtful! India mulls 2035 ICE ban, blocks fuel sales to older vehicles

In a bold bid to combat the crippling air pollution crisis in its capital, Delhi, Indian lawmakers have begun high-level discussions about a plan to phase out gas and diesel combustion vehicles by 2035 – a move that could cause a seismic shift in the global EV space and provide a cleaner, greener future for India’s capital.

Long considered one of the world’s most polluted capital cities, Indian capital Delhi is taking drastic steps to cut back pollution with a gas and diesel engine ban coming soon – but they want results faster than that. As such, Delhi is starting with a city-wide ban on refueling vehicles more than 15 years old, and it went into effect earlier this week. (!)

“We are installing gadgets at petrol pumps which will identify vehicles older than 15 years, and no fuel will be provided to them,” said Delhi Environment Minister Manjinder Singh Sirsa … but they’re not stopping there. “Additionally, we will intensify scrutiny of heavy vehicles entering Delhi to ensure they meet prescribed environmental standards before being allowed entry.”

Making it prohibitively difficult for Dehli’s residents to own and operate older, presumably more polluting vehicles is one way to reduce harmful emissions and air pollution, but Sirsa’s team isn’t just targeting newer vehicles. They’re also planning to deploy more than 900 electric transit buses, part of a larger plan to replace 5,000 of the city’s 7,500 total bus with lower- or zero-emission options this year alone.

Advertisement – scroll for more content

The Economic Times is reporting that discussions are underway to pass laws requiring that all future bus purchases will be required to be electric or “clean fuel” (read: CNG or hydrogen) by the end of this year, with a gas/diesel ban on “three-wheelers and light goods vehicles,” (commercial tuk-tuks and delivery mopeds) potentially coming 2026 to 2027 and a similar ban privately owned and operated cars and bikes coming “between 2030 and 2035.”

Electrek’s Take

2025 Xpeng G6 all-electric SUV with 5C ultra-fast charging “AI batteries” launched in China
Xpeng EV with Turing AI and Bulletproof battery; via XPeng.

After a Chinese government study linked air pollution caused by automotive exhausts and coal-fired power plants to more than 1.1 million deaths per year in 2013, the nation’s government took serious action, shuttering older coal plants and imposing strict emissions standards. The country also incentivized EV adoption through license-plate lotteries favoring electric cars and a nationwide EV mandate set to kick in by 2030.

The results were astounding, and the technological innovations that have come from an entire nation of talented engineers all “pulling in the same direction” have put the West to shame, with Western auto executives repeatedly sounding the alarm and lobbying for tariffs and other protectionist policies on both sides of the Atlantic.

To see India make move towards a gas and diesel ban like this, and on such an aggressive timeline, can only mean that they’ve been paying attention … and America is about to fall even further behind.

SOURCE: India Times; featured image by Sumita Roy Dutta.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Parker launches Mobile Electrification Technology Center training program

Published

on

By

Parker launches Mobile Electrification Technology Center training program

Last week, Parker Hannifin launched what they’re calling the industry’s first certified Mobile Electrification Technology Center to train mobile equipment technicians make the transition from conventional diesel engines to modern electric motors.

The electrification of mobile equipment is opening new doors for construction and engineering companies working in indoor, environmentally sensitive, or noise-regulated urban environments – but it also poses a new set of challenges that, while they mirror some of the challenges internal combustion faced a century ago, aren’t yet fully solved. These go beyond just getting energy to the equipment assets’ batteries, and include the integration of hydraulic implements, electronic controls, and the myriad of upfit accessories that have been developed over the last five decades to operate on 12V power.

At the same time, manufacturers and dealers have to ensure the safety of their technicians, which includes providing comprehensive training on the intricacies of high-voltage electric vehicle repair and maintenance – and that’s where Parker’s new mobile equipment training program comes in, helping to accelerate the shift to EVs.

“We are excited to partner with these outstanding distributors at a higher level. Their commitment to designing innovative mobile electrification systems aligns perfectly with our vision to empower machine manufacturers in reducing their environmental footprint while enhancing operational efficiency,” explains Mark Schoessler, VP of sales for Parker’s Motion Systems Group. “Their expertise in designing mobile electrification systems and their capability to deliver integrated solutions will help to maximize the impact of Parker’s expanding METC network.”

Advertisement – scroll for more content

The manufacturing equipment experts at Nott Company were among the first to go through the Parker Hannifin training program, certifying their technicians on Parker’s electric motors, drives, coolers, controllers and control systems.

“We are proud to be recognized for our unwavering dedication to advancing mobile electrification technologies and delivering cutting-edge solutions,” says Nott CEO, Markus Rauchhaus. “This milestone would not have been possible without our incredible partners, customers and the team at Nott Company.”

In addition to Nott, two other North American distributors (Depatie Fluid Power in Portage, Michigan, and Hydradyne in Fort Worth, Texas) have completed the Parker certification.

Electrek’s Take

electric bobcat track loader
T7X all-electric track loader at CES 2022; via Doosan Bobcat.

With the rise of electric equipment assets like Bobcat’s T7X compact track loader and E10e electric excavator that eliminate traditional hydraulics and rely on high-voltage battery systems, specialized electrical systems training is becoming increasingly important. Seasoned, steady hands with decades of diesel and hydraulic systems experience are obsolete, and they’ll need to learn new skills to stay relevant.

Certification programs like Parker’s are working to bridge that skills gap, equipping technicians with the skills to maximize performance while mitigating risks associated with high-voltage systems. Here’s hoping more of these start popping up sooner than later.

SOURCE | IMAGES: Parker Hannifin.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

ReVolt extended range electric semi trucks score their first customer

Published

on

By

ReVolt extended range electric semi trucks score their first customer

Based on a Peterbilt 579 commercial semi truck, the ReVolt EREV hybrid electric semi truck promises 40% better fuel economy and more than twice the torque of a conventional, diesel-powered semi. The concept has promise – and now, it has customers.

Austin, Texas-based ReVolt Motors scored its first win with specialist carrier Page Trucking, who’s rolling the dice on five of the Peterbilt 579-based hybrid big rigs — with another order for 15 more of the modified Petes waiting in the wings if the initial five work out.

The deal will see ReVolt’s “dual-power system” put to the test in real-world conditions, pairing its e-axles’ battery-electric torque with up to 1,200 miles of diesel-extended range.

ReVolt Motors team

ReVolt Motors team; via ReVolt.

The ReVolt team starts off with a Peterbilt, then removes the transmission and drive axle, replacing them with a large genhead and batteries. As the big Pete’s diesel engine runs (that’s right, kids – the engine stays in place), it creates electrical energy that’s stored in the trucks’ batteries. Those electrons then flow to the truck’s 670 hp e-axles, putting down a massive, 3500 lb-ft of Earth-moving torque to the ground at 0 rpm.

Advertisement – scroll for more content

The result is an electrically-driven semi truck that works like a big BMW i3 or other EREV, and packs enough battery capacity to operate as a ZEV (sorry, ZET) in ports and urban clean zones. And, more importantly, allows over-the-road drivers to hotel for up to 34 hours without idling the engine or requiring a grid connection.

That ability to “hotel” in the cab is incredibly important, especially as the national shortage of semi truck parking continues to worsen and the number of goods shipped across America’s roads continues to increase.

And, because the ReVolt trucks can hotel without the noise and emissions of diesel or the loss of range of pure electric, they can immediately “plug in” to existing long-haul routes without the need to wait for a commercial truck charging infrastructure to materialize.

“Drivers should not have to choose between losing their longtime routes because of changing regulatory environments or losing the truck in which they have already made significant investments,” explains Gus Gardner, ReVolt founder and CEO. “American truckers want their trucks to reflect their identity, and our retrofit technology allows them to continue driving the trucks they love while still making a living.”

If all of that sounds familiar, it’s probably because you’ve heard of Hyliion.

Hyliion electric semi truck

Hyliion Hypertruck ERX; via Hyliion.

Before it changed its focus to develop Carnot-cycle generators and gensets, Austin-based Hyliion built a number of EREV Peterbilts using the then-new 15L Cummins diesel as a generator and employing the same sort of battery and e-axle-arrangement as ReVolt.

In addition to being located in the same town and employing the same idea in the same Peterbilt 579 tractor, ReVolt even employs some of the same key players as Hyliion: both the company’s CTO, Chandra Patil, and its Director of Engineering, Blake Witchie, previously worked at Hyliion’s truck works.

Still, Hyliion made their choice when they shut down their truck business. ReVolt seems to have picked up the ball – and their first customer is eager to run with it.

“Our industry is undergoing a major transition, and fleet owners need practical solutions that make financial sense while reducing our environmental impact,” said Dan Titus, CEO of Page Trucking. “ReVolt’s hybrid drivetrain lowers our fuel costs, providing our drivers with a powerful and efficient truck, all without the need for expensive charging infrastructure or worrying about state compliance mandates. The reduced emissions also enable our customers to reduce their Scope 2 emissions.”

Page Trucking has a fleet of approximately 500 trucks in service, serving the agriculture, hazardous materials, and bulk commodities industries throughout Texas. And, if ReVolt’s EREV semis live up to their promise, expect them to operate a lot more than 20 of ’em.

SOURCES | IMAGES: ReVolt; via Power Progress, TTNews.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending