Connect with us

Published

on

There are three fossil fuels we must stop burning if we are to save our planet: coal, oil, and methane (aka “natural”) gas. Coal is declining precipitously. Scientists think we hit peak coal in 2013, and American use of coal has fallen by over 50% in the last 10 years (though, we need to quickly nail this coffin closed considering how dirty and polluting coal is). Oil is seeing the writing on the wall as major automakers commit to electric vehicles. Many think 2019 may have been the year we hit peak oil, and EVs are expected to make the internal combustion engine a “historical technology” by 2040. The faster we historicize petroleum, the better, so please buy that electric car or e-bike today. 

Natural gas (aka methane) now comes into sight as the next fossil fuel we need to banish in the quest to rescue ourselves from the most catastrophic climate catastrophe. Burning methane is currently responsible for nearly 25% of all carbon emissions in the US, and its use is growing. Methane is also deeply embedded in many of our homes, and this will make it a challenge to extricate. We aren’t anywhere near hitting peak natural gas usage on our current trajectory.

But, as of recently, some American cities, mostly in California, have recognized the need to eliminate gas and slowly get us off the fossil sauce. In 2019, these leading cities did something that had never been done in the history of our species — they started banning future use of methane in new construction. The idea has been to stop digging a hole that we have to quickly climb out of, so they legislated that no new homes or buildings should be built with methane hookups. This will avoid costly retrofits later. The city-led ban began in California, has reached over 50 cities, and is spreading up the West Coast like a good kind of wildfire. 

Enter “Renewable” Natural Gas

Any entrenched industry will fight with all its might not to disrupt revenue streams, regardless of the effects of their products on humanity (see: oxycontin and tobacco). So, it is to be expected that methane peddlers will spend the next crucial decades resisting efforts to ban their product. They’ll use lots of arguments to slow humanity’s inexorable push towards a fossil fuel future. The most ingenious/insidious one that we must quickly debunk is that their carbon polluting fuel is actually clean or has the potential to become so.

Enter, stage right, “renewable natural gas,” or RNG, a brilliant buzzword for a product that companies are counting on consumers to believe in, to continue with business mostly as usual. Renewable natural gas is methane that comes from biological sources like human and cow sewage or landfills. It differs from current methane, which is fracked from the earth’s interior, some of which escapes through pipes, while the rest is burned, adding to our dangerous warming blanket. RNG harnesses methane being created anyway and thus, doesn’t add new layers to our greenhouse problem. A group of nonprofits in my region just released an in-depth look at renewable natural gas and the numbers aren’t good. 

How to Make Renewable Natural Gas — Anaerobic Digestion and Gasification

Before we can examine how much RNG our society will be able to realistically produce, let’s briefly talk about the two ways to make renewable natural gas. Even though, as we’ll shortly see, RNG won’t come remotely close to meeting our current gas demand, it still has the potential to be an important, lower-carbon tool in reducing the emissions of hard-to-decarbonize applications (like industry). 

The first way to make RNG is through anaerobic digestion technology. This is a process where bacteria eat waste in an atmosphere that doesn’t contain oxygen (anaerobic). Sewage treatment plants and pig farms use this process. They gather fecal matter, bring bacteria to a specific temperature, do a lot of other magic in pipes, and out comes methane gas. Landfills are another source of this methane as wasted food and other fun stuff are eaten by bacteria underground and methane is created as a byproduct.

The second way to make RNG is through thermal gasification, which “uses energy to turn agriculture and commercial forest harvest residues” into something called Syngas. Syngas can then be converted to methane with more processing. According to a large survey by the State of Oregon, “There are currently no commercial-scale thermal gasification plants in the United States that convert biomass into methane. The existing plants produce syngas, which is burned and used to generate heat and electricity.” So thermal gasification is a potentially important, but unproven technology that should not make us believe that we can simply keep burning gas in our homes. 

How Much Renewable Natural Gas Could We Conceivably Produce?

In the 2018 Oregon study cited above, (which had many gas industry officials involved in its writing) researchers looked at what we could optimistically hope for from RNG production. The numbers aren’t good. The potential for anaerobic digestion is 4.6% while the potential for thermal gasification is 17.5% of current natural gas usage in the state. So RNG could potentially cover 20% of the methane gas we use today, assuming significant investments in technology and distribution systems that do not exist today – in other words and not anytime soon.Think about it. We could work our tushies off over the next couple, crucial decades, to try to decarbonize natural gas pipes, while the planet is heating up and wildfire smoke is crossing our country coast to coast, and after crucial time and work, we’d still be using 80% fracked, fossil natural gas. If that’s not backing the wrong horse, then I don’t know what is. 

Oregon’s numbers are similar to national numbers. Another study found that, nationally, we could hope for about 16% renewable natural gas, and again, this is far in the future and only if we invest heavily in RNG.

Compare that to electricity as a fuel, and you’ll see a stark difference. Right now, the national electric grid gets 20% of its power from renewables and 20% from nuclear, making electricity 40% carbon free. Biden wants to get to 100% by 2035. Oregon recently passed a law to get to 80% clean electricity by 2030 and 100% by 2040. Wind and solar are carbon neutral and are the cheapest and most installed forms of new energy generation. We have the roadmap and the tools to completely decarbonize electricity over the next 10–20 years and are doing so faster than anyone expected. Clean electricity is real, proven, happening and the horse we should be backing. 

Electrifying our house and capping our natural gas pipe was one of the best things my family has done for the climate.

Other problems with renewable natural gas

There are other significant problems with renewable natural gas which are highlighted in depth in this brilliant article by Laura Feinstein and Eric de Place. Renewable natural gas isn’t even zero carbon. It is true that it often comes from existing sources of methane, but often those sources of methane could be avoided. Take landfills for example. When we toss food scraps into landfills it creates methane. We could capture that methane to make renewable natural gas or we could compost the food scraps like many cities and nations do, and avoid making that methane in the first place and get the benefits of richer, healthier soil in our communities. Relying on renewable natural gas could thus lock us into wasteful, inefficient practices when other options exist. 

Another significant problem is that RNG costs a lot to make. A million BTUs of methane gas currently costs $3. The median cost for the equivalent amount of RNG is about 6 times that, at $18. Yipes! Imagine telling consumers that their gas bills are going to sextuple, and you’ll start to see how viable RNG is as a long term solution. 

Scratch the surface, and it’s easy to see how RNG meets the classic definition of a red herring; “something that misleads and distracts us from a relevant or important question.” There won’t be very much of it, and it’s going to be very expensive. Let’s not get sidetracked from real climate solutions. When our local methane suppliers use the word “renewable” to keep pumping fossils into our homes, we need to understand that this is at best a stalling tactic and a greenwash to distract from the dangers of methane gas. Let’s stay focused on more realistic solutions for heating our homes and addressing the climate crisis like electrification.

I’ll be co-hosting a free webinar with Electrify Now on “The Future of Natural Gas” on Wednesday, September 22. Register and get more information here

Check out this in-depth report on methane gas released by a coalition of 62 organizations recently. 

Related: Natural Gas Leaks Deadly For Trees (Video)

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Toxic Pennsylvania mineland is about to become a big solar farm

Published

on

By

Toxic Pennsylvania mineland is about to become a big solar farm

Rush Township supervisors in Centre County, Pennsylvania, voted this week to greenlight a key permit for the Black Moshannon Solar project – a large solar development that would turn toxic former mineland into a major source of clean power.

If built, the Pennsylvania solar project would generate 265 megawatts of electricity – enough to power about 200,000 homes annually – on nearly 2,000 acres of toxic mineland. Developers deliberately chose the site, as the project is designed to reclaim land left behind by mining and fold environmental cleanup into the solar buildout.

According to project plans, the site would be restored with pollinators and pollinator-friendly ground cover planted beneath the solar panels. Developers have also committed to ongoing water quality and soil testing during construction and operations, along with soil improvements such as applying lime to help neutralize mining-related contamination and support vegetation growth.

Beyond the environmental cleanup, the project is expected to deliver a financial boost to the region. Black Moshannon Solar is projected to generate more than $5 million in tax revenue for the Phillipsburg-Osceola Area School District, along with more than $700,000 in direct tax payments to Centre County.

Advertisement – scroll for more content

Environmental and energy advocates praised the township’s decision. David Masur, executive director of PennEnvironment, called the vote a model for other communities across the state. “We are hopeful that other local government officials across Pennsylvania will follow Rush Township’s lead and implement similar, much-needed solar projects all across the Keystone State.”

Jim Gregory, executive director of the Conservative Energy Network-Pennsylvania, also applauded the approval. “In 40 years, their forward-thinking decisions will be recognized as catalysts for environmental protection, public health improvements, and economic prosperity.”

Read more: Trump admin OKs $1B loan for Three Mile Island nuclear reboot


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Genesis GV90 leaks as breathtaking ultra-luxe SUV with coach doors [Video]

Published

on

By

Genesis GV90 leaks as breathtaking ultra-luxe SUV with coach doors [Video]

Genesis is gearing up to launch the stunning new flagship SUV. Ahead of its official debut, the GV90 leaked during an internal presentation, revealing our first look at the ultra-luxe electric SUV.

Genesis GV90 leak reveals coach doors and more

The GV90 is arriving as the largest, most luxurious Genesis SUV to date. Based on the Neolun Concept, the new flagship SUV will sit above the GV80 as Genesis expands into new segments.

As Genesis calls it, the “ultra-luxe, state-of-the-art SUV” stole the spotlight at the New York Auto Show last March.

It wasn’t the stunning, reductive design inspired by Korea’s moon-shaped porcelain jars or the premium Royal Indigo and Purple silk materials that caught most people’s attention at the event, but the B-pillarless coach doors.

Advertisement – scroll for more content

The SUV was showcased with Rolls-Royce-like coach doors, offering a new level of luxury for Genesis. Although we’ve seen the GV90 spotted out in public testing a few times now with coach doors, we wondered if they would make it to the production model.

Genesis-GV90-leak-coach-doors
The Genesis Neolun electric SUV concept, a preview of the GV90 (Source: Genesis)

After the full-size SUV reportedly leaked during an internal presentation, it looks like we’ve found our answer. The Genesis GV90 leak reveals two versions: a standard model and a coach-door model.

The leaked images from our friends at ShortsCar offer our first look at the production version in full. Earlier this month, a GV90 prototype was spotted out in public with the coach doors wide open, providing a sneak peek of the interior.

From what was shown, the cabin will feature a similar layout to the concept, with high-end purple and indigo materials. The GV90 was also caught with an all-black interior, which is expected to be the standard version.

A new video from the folks over at HealerTV offers a closer look at the breathtaking interior ahead of its official debut.

The GV90 appears to retain the gear selector located near the top of the steering wheel from the Neolun concept.

Another report, from TheKoreanCarBlog, confirms the new gear selector after the first interior spy shots surfaced.

From what we’ve seen so far, the GV90 is shaping up to be a near replica of the ultra-luxe Neolun concept. Genesis has yet to announce a launch date for the GV90, but it is expected to make an official debut by the end of the year with sales starting in mid-2026.

Prices and final specs, like driving range, will be revealed closer to launch, but the Genesis GV90 is rumoured to be the first vehicle to ride on Hyundai’s new eM platform.

Hyundai said the new platform will deliver a 50% improvement in range compared to its current E-GMP-based EVs, such as the IONIQ 5. It’s also expected to offer Level 3 autonomous driving as well as other advanced driver assistance system (ADAS) features.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Battery storage hits $65/MWh – a tipping point for solar

Published

on

By

Battery storage hits /MWh – a tipping point for solar

Turning cheap daytime solar into electricity you can actually use at night just got a lot cheaper. A new analysis from energy think tank Ember shows that utility-scale battery storage costs have fallen to $65 per megawatt-hour (MWh) as of October 2025 in markets outside China and the US. At that level, pairing solar with batteries to deliver power when it’s needed is now economically viable.

Battery storage costs have fallen dramatically over the past two years, and the decline continues. Following a steep decline in 2024, Ember’s analysis indicates that prices continued to fall sharply again in 2025.

The findings are based on real-world data from recent battery and solar-plus-storage auctions in Italy, Saudi Arabia, and India, as well as interviews with active developers across global markets.

According to Ember, the cost of a whole, grid-connected utility-scale battery storage system for long-duration projects (four hours or more) is now about $125 per kilowatt-hour (kWh) as of October 2025. That figure applies to projects outside China and the US. Core battery equipment delivered from China costs around $75/kWh, while installation and grid connection typically add another $50/kWh.

Advertisement – scroll for more content

Those lower upfront costs have pushed down the levelized cost of storage (LCOS) to just $65/MWh. Ember’s calculation reflects real-world assumptions around financing costs, system lifetime, efficiency, and battery degradation.

Cheaper hardware isn’t the only reason storage costs are falling. Longer battery lifetimes, higher efficiencies, and lower financing costs, helped by clearer revenue models such as auctions, have all contributed to the sharp drop in LCOS. Ember has published a live calculator alongside the report, allowing users to estimate LCOS using their own assumptions.

Why this matters comes down to how solar is actually used. Most solar power is generated during the day, so only a portion needs to be stored to make it dispatchable. Ember estimates that if half of daytime solar generation is shifted to nighttime, the $65/MWh storage cost adds about $33/MWh to the cost of solar electricity.

With the global average price of solar at $43/MWh in 2024, adding storage would bring the total cost to about $76/MWh, delivering power in a way that better matches real demand.

As Ember global electricity analyst Kostantsa Rangelova put it, after a 40% drop in battery equipment costs in 2024, the industry is now on track for another major fall in 2025. The economics of battery storage, she said, are “unrecognizable,” and the industry is still adjusting to this new reality.

“Solar is no longer just cheap daytime electricity; now it’s anytime dispatchable electricity. This is a game-changer for countries with fast-growing demand and strong solar resources,” Rangelova added.

Together, solar and battery storage are increasingly emerging as a scalable, secure, and affordable foundation for future power systems.

Read more: EIA: Solar + storage soar as fossil fuels stall through September 2025


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending