Connect with us

Published

on

Courtesy of RMI.
By Max Lainfiesta, Nathaniel Buescher, & Michael Liebman 

Income inequality is palpable on the streets of the United States in cities and towns alike. On one block you may have neighborhoods with maintained roads and sidewalks, well-funded schools, and easy access to services including grocery stores, transit, healthcare, and banks. And on the next block you may have neighborhoods in transit or food deserts with vulnerable key infrastructure including streets, schools, and healthcare.

This checkerboard-like phenomenon becomes ever more apparent after a disaster, as communities with less resources wait, often literally in the dark, while construction crews and vehicles go first to the areas with more.

This was especially visible in Puerto Rico after Hurricane Maria, which struck four years ago on September 20, when communities endured the longest power outage in US history. Public aid for many lower- and middle-income communities was both insufficient and slow. That is why RMI and partners* formed the Puerto Rico Community Energy Resilience Initiative (CERI).

CERI’s goal is to advance access to reliable and renewable energy for critical facilities in low-to-moderate income communities using solar plus storage microgrids. Under a broader definition of critical facility, examples include hospitals and fire stations, local life-sustaining businesses, and non-profits providing essential services following disasters.

The CERI team spent a year working on pilot projects, community engagement, and financing vehicle development. In the end, the team found that a community-driven process combined with flexible capital and technical assistance is the most effective way to help achieve energy resilience for those whose needs are not served in the current market.

The CERI team on site at one of the critical facilities: Farmacia Jomari in rural Puerto Rico. During power outages after Hurricane Maria, the pharmacy provided critical health & financial services to local community members.

Putting All Communities in the Driver’s Seat

CERI puts Puerto Rican communities that received limited aid after disasters in the driver’s seat. The team does this by first listening to community stakeholders and then addressing their energy resilience needs by preparing and de-risking the project. CERI then uses a blend of capital from financial institutions and philanthropic organizations to advance access to reliable and renewable energy.

Currently, the CERI team is installing four pilot projects at critical facilities: two nonprofit organizations and two local businesses, with systems averaging approximately 63 kW of solar and 30 kWh of storage. The pilot projects highlight the importance of community ownership of systems, flexibility in designing a project’s financing, and timing for engaging different stakeholders.

When microgrid projects are locally owned, community members autonomously create their energy goals while simultaneously bolstering local economies and jobs. Facility leaders can determine which equipment and operations must continue during an outage based on their own experiences. This bottom-up involvement shifts accountability from external programs to the community itself.

Flexible Financing Adapts to Community Needs

It is crucial to have financing models that are scalable yet able to flex to individual project constraints. The CERI team will soon launch a financing vehicle which will provide critical facilities throughout the island with concessionary capital and technical assistance needed to simultaneously make systems more affordable and make financing viable.

Operationally, this equates to a lower interest rate and a shorter term on the loan used to pay for the facility’s microgrid. This grant funding contributes to the system’s down payment and to the creation of a loan loss reserve for financial institutions to allow facilities with varying credit histories to access competitive interest rates.

The CERI team’s initial vision was to award a project with an amount of grant funding so that the microgrid’s estimated monthly costs over a 10-year period would be less than the facility’s average monthly energy bill. Monthly costs include loan payments, maintenance, insurance costs, and fixed fees to the utility.

Although some facility staff prioritized the lower monthly energy costs, other facility managers were willing to pay more to reduce their loan term. Such scenarios highlighted the need for the CERI team to work with financial institutions to offer flexibility in the loan’s terms and/or payment options that do not penalize early payments.

Syncing Timelines of Multiple Stakeholders

From a timeline perspective, as the CERI team scales up, the team will ensure to use an inclusive and fair process for project recruitment and selection. This includes engaging with all types of communities (rural and urban, for example) and maintaining transparency with interested facilities.

Once projects are selected, CERI team members will be diligent to engage all the project’s stakeholders early in the project development process and use a competitive process whenever possible to find savings for the participating organizations. Such stakeholders include local financial institutions, local microgrid developers, and critical facility staff. These stakeholders have varying amounts of staff available to focus on a specific microgrid project and differing due diligence and review processes.

For example, financial institutions assess the facility’s financial history, developers build systems based on the facility staff’s requirements, and the facility staff decide whether to take a loan depending on costs and loan terms. If not lined up properly, these timelines translate into time-consuming due diligence processes and rounds of negotiation that can lead to delays in a project.

The Right System for Each Individual Need

Facilities have greatly varying needs differing on the types of electricity services, electricity rates, and on how and when they use energy. Therefore, technical assistance on energy modeling, system sizing, energy efficiency analysis, and procurement support is key to ensure that each facility has the right system and best price for its specific needs.

For example, a therapy and rehabilitation center may use power mainly during weekdays while a supermarket may require a steady energy supply 24 hours a day, seven days a week, 365 days a year. In the event of a prolonged power outage, facilities have very different critical load needs — while some facilities may be able to operate with 25 percent of the usual energy supply, others may require 50 percent or more. Time of use and critical load size have significant implications when designing battery size.

There are also physical constraints that affect project design. Some facilities may have a structurally sound roof that has enough space to accommodate the system, while others may not have enough roof space or may need significant repairs to accommodate a solar system. And some facilities may need ground-mounted systems that increase the system costs (ground mounted systems of this size are often more expensive than roof mounted systems based on the additional construction needed).

In most cases, facility owners and or administrators lack the experience and background needed to know if the system is right for their needs, if the price is appropriate given the market, or if the equipment meets the local requirements. With technical assistance, facilities can get the right system at the right price, and are likely to share their positive experiences with colleagues. This will lead to grassroots scaling of renewable energy in communities in Puerto Rico and beyond.

 The Importance of Capacity Building

Maintenance is key to the sustainability of these systems. Building the capacity to check the system, use pre-contracted O&M and warranties, replace parts as needed, and ensure continuous safety and system operation is essential. Through a CERI-specific capacity building plan, facility owners and administrators gain the knowledge required to understand the technical aspects, financials, and overall implications of acquiring and maintaining a solar-plus-storage microgrid.

What’s Next for CERI?

The CERI team is preparing a transition to a next phase of demonstration projects across Puerto Rico. This work will set the stage for the full implementation of a scaled-up financing vehicle where hundreds of facilities will benefit from affordable and resilient solar-plus-storage microgrids.

These microgrids will provide stable energy prices, savings from day one, the ability to continue providing essential services in the event of an emergency, environmental benefits, and ultimately, community resilience and wellness. They will enable all community members to receive critical services such as health care, food, water, and communication when needed most.

If you are interested in learning more, please contact us at CERI@rmi.org.

* CERI was founded by The Rockefeller Foundation; RMI; Fundación Comunitaria de Puerto Rico; The Puerto Rico Science, Technology, and Research Trust; the Association of Renewable Energy Consultants and Contractors for Puerto Rico; and Resilient Power Puerto Rico.

Featured photo by Wei Zeng on Unsplash

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Honda now has an electric Ruckus. Will they bring it to the US?

Published

on

By

Honda now has an electric Ruckus. Will they bring it to the US?

The Honda Ruckus has earned cult status thanks to its minimalist styling, exposed frame, and seemingly endless customizability. The scooter, also known in international markets as the Honda Zoomer, has spent years being seen as a blank canvas for scooter tuners, urban commuters, and anyone who just wanted something simple, small, and kind of weird to zip around town. A few years ago, Honda finally answered the call for an updated version by announcing and producing the “Zoomer e:”, which was an electric version of the Honda Ruckus. So where is it?

When Honda launched the all-electric version of the Ruckus, the Zoomer e:, back in 2023, many fans hoped it was only a matter of time before we saw it quietly glide onto U.S. streets.

But two years later, there’s still no sign of a stateside release, and no indication that Honda plans to change that anytime soon.

The Zoomer e: was first introduced in China in early 2023 alongside two other retro-inspired electrics: the Cub e: and Dax e:.

Advertisement – scroll for more content

The Zoomer e: keeps the stripped-down, industrial look of the classic gas-powered Ruckus, but swaps the 49cc engine for a 400W rear hub motor and a 48V 24Ah battery (around 1.15 kWh).

It was originally given a top speed of a mere 25 km/h (15.5 mph) to keep it street legal as an electric bicycle in its first market of China, where it also came with functional but stubby pedals so riders could pretend it was actually pedalable.

The first version of the electric scooter claimed a range of up to 80–90 km (50–56 miles) from its removable lithium-ion battery, depending on conditions.

An advertisement for a Honda Zoomer e: in the Philippines via Facebook

We’ve since seen the performance bumped up to 40 km/h (25 mph) top speeds when the scooter was introduced into the Philippines market, where the local L1B classification allowed for higher speeds. It’s fairly obvious that the performance can be software-tweaked by Honda depending on the market, though likely to a limit. To achieve speeds much higher than 25 mph, a motor and controller swap may be required, though neither would be complicated.

In other words, the electric Ruckus’ debut revealed an ultra-lightweight, street-legal runabout designed for countries with expansive low-speed e-bike laws. But in the U.S., these types of quasi-e-bikes that are actually scooters are few and far between. The same performance can be had from a $1,000 electric bicycle, and in fact, Class 3 e-bikes in the US can go nearly twice as fast as the original electric Ruckus.

So Honda obviously hasn’t been in a rush to bring its low-spec version of the bike to the US market, where it would be a slower and heavier competitor to the wide range of cheap imported electric bicycles. However, its iconic design and cultural legacy have kept enthusiasm up for riders who have managed to privately import their own models. One Redditor appears to have imported two Honda Zoomer e: models in parts to assemble in the US, while someone else posted a YouTube video of his completely assembled Honda Dax e: model that was launched along the Zoomer e:.

Despite clear consumer interest and a growing market for low-speed electric vehicles, as well as Honda’s own proven interest in growing its electric scooter market, the company hasn’t made any moves to release the Zoomer e: in the US. That’s not surprising since America still lacks a robust electric scooter culture (or even a gasoline scooter culture, for that matter), and anything motorcycle-shaped that doesn’t hit 30+ mph tends to get passed over by mainstream buyers.

But perhaps that could change one day. Technically, bringing the Zoomer e: to the US wouldn’t be a monumental task for Honda. The U.S. is a self-certify country, meaning Honda could design a version that meets federal vehicle safety standards, beef up the motor and controller for higher speeds, and sell it as either a Class 2/3 e-bike, or perhaps more appropriately, as a low-speed motorcycle with a top speed in the 35-45 mph range (55-70 km/h).

With the rise of micromobility, electrification, and growing frustration with car-centric cities, now might actually be the perfect time for a reborn electric Ruckus to hit US roads. But until Honda decides to take that step, American riders will have to keep dreaming – or start importing.

A private import of a Honda Zoomer e: to the US

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

BMW ups the ante with the fastest, most powerful electric maxi-scooter

Published

on

By

BMW ups the ante with the fastest, most powerful electric maxi-scooter

BMW Motorrad’s futuristic electric scooter just got its first real refresh since beginning production in 2021. The BMW CE 04, already one of the most capable and stylish electric maxi-scooters on the market, now gets a set of upgraded trim options, new aesthetic touches, and a more robust list of features that aim to make this urban commuter even more appealing to riders looking for serious electric performance on two wheels.

The BMW CE 04 has always stood out for its sci-fi styling and high-performance drivetrain. It’s built on a mid-mounted liquid-cooled motor that puts out 31 kW (42 hp) and 62 Nm of torque. That’s enough to rocket the scooter from 0 to 50 km/h (31 mph) in just 2.6 seconds – quite fast for anything with a step-through frame.

The top speed is electronically limited to 120 km/h (75 mph), making it perfectly capable for city riding and fast enough to hold its own on highway stretches. Range is rated at 130 km (81 miles) on the WMTC cycle, thanks to the 8.9 kWh battery pack tucked low in the frame.

But while the core performance hasn’t changed, BMW’s 2025 update focuses on refining the package and giving riders more options to tailor the scooter to their taste. The new CE 04 is available in three trims: Basic, Avantgarde, and Exclusive.

Advertisement – scroll for more content

The Basic trim keeps things clean and classic with a Lightwhite paint scheme and a clear windshield. It’s subtle, sleek, and very much in line with the CE 04’s clean-lined aesthetic. The Avantgarde model adds a splash of color with a Gravity Blue main body and bright São Paulo Yellow accents, along with a dark windshield and a laser-engraved rim. The top-shelf Exclusive trim is where things get fancy, with a premium Spacesilver metallic paint job, upgraded wind protection, heated grips, a luxury embroidered seat, and its own unique engraved rim treatment.

There are also a few new tech upgrades baked into the options list. Riders can now spec a 6.9 kW quick charger that reduces the 0–80% charge time to just 45 minutes (down from nearly 4 hours with the standard 2.3 kW onboard charger). Tire pressure monitoring, a center stand, and BMW’s “Headlight Pro” adaptive lighting system are also available as add-ons, along with an emergency eCall system and Dynamic Traction Control.

BMW has kept the core riding components in place: a steel-tube chassis, 15-inch wheels, Bosch ABS (with optional ABS Pro), and the impressive 10.25” TFT display with integrated navigation and smartphone connectivity. The under-seat storage still swallows a full-face helmet, and the long, low frame design means the scooter looks like something out of Blade Runner but rides like a luxury commuter.

With these updates, BMW seems to be further cementing the CE 04’s role at the high end of the electric scooter market. It’s not cheap, starting around €12,000 in Europe and around US $12,500 in the US, with prices going up from there depending on configuration. However, the maxi-scooter delivers real motorcycle-grade performance in a package that’s easier to live with for daily riders.

Electrek’s Take

I believe that the CE 04’s biggest strength has always been that it’s not trying to be a toy or a gimmick. It’s a real vehicle. Sure, it’s futuristic and funky looking, but it delivers on its promises. And in a market that’s still surprisingly sparse when it comes to premium electric scooters, BMW has had the lane mostly to itself. That may not last forever, though. LiveWire, Harley-Davidson’s electric spin-off brand, has teased plans for a maxi-scooter-style urban electric vehicle in the coming years, but as of now, it remains something of an undefined future plan.

Meanwhile, BMW is delivering not just a concept bike but a mature, well-equipped, and ready-to-ride electric scooter that keeps improving. For riders who want something faster and more capable than a Class 3 e-bike but aren’t ready to jump to a full-size electric motorcycle, the CE 04 hits a sweet spot. It delivers the performance and capability of a commuter e-motorcycle, yet with the approachability of a scooter. And with these new trims and upgrades, it’s doing it with even more style.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

I found this cheap Chinese e-cargo trike that hauls more than your car!

Published

on

By

I found this cheap Chinese e-cargo trike that hauls more than your car!

If you’ve ever wondered what happens when you combine a fruit cart, a cargo bike, and a Piaggio Ape all in one vehicle, now you’ve got your answer. I submit, for your approval, this week’s feature for the Awesomely Weird Alibaba Electric Vehicle of the Week column – and it’s a beautiful doozie.

Feast your eyes on this salad slinging, coleslaw cruising, tuber taxiing produce chariot!

I think this electric vegetable trike might finally scratch the itch long felt by many of my readers. It seems every time I cover an electric trike, even the really cool ones, I always get commenters poo-poo-ing it for having two wheels in the rear instead of two wheels in the front. Well, here you go, folks!

Designed with two front wheels for maximum stability, this trike keeps your cucumbers in check through every corner. Because trust me, you don’t want to hit a pothole and suddenly be juggling peaches like you’re in Cirque du Soleil: Farmers Market Edition.

Advertisement – scroll for more content

To avoid the extra cost of designing a linked steering system for a pair of front wheels, the engineers who brought this salad shuttle to life simply side-stepped that complexity altogether by steering the entire fixed front end. I’ve got articulating electric tractors that steer like this, and so if it works for a several-ton work machine, it should work for a couple hundred pounds of cargo bike.

Featuring a giant cargo bed up front with four cascading fruit baskets set up for roadside sales, this cargo bike is something of a blank slate. Sure, you could monetize grandma’s vegetable garden, or you could fill it with your own ideas and concoctions. Our exceedingly talented graphics wizard sees it as the perfect coffee and pastry e-bike for my new startup, The Handlebarista, and I’m not one to argue. Basically, the sky is the limit with a blank slate bike like this!

Sure, the quality doesn’t quite match something like a fancy Tern cargo bike. The rim brakes aren’t exactly confidence-inspiring, but at least there are three of them. And if they should all give out, or just not quite slow you down enough to avoid that quickly approaching brick wall, then at least you’ve got a couple hundred pounds of tomatoes as a tasty crumple zone.

The electrical system does seem a bit underpowered. With a 36V battery and a 250W motor, I don’t know if one-third of a horsepower is enough to haul a full load to the local farmer’s market. But I guess if the weight is a bit much for the little motor, you could always do some snacking along the way. On the other hand, all the pictures seem to show a non-electric version. So if this cart is presumably mobile on pedal power alone, then that extra motor assist, however small, is going to feel like a very welcome guest.

The $950 price is presumably for the electric version, since that’s what’s in the title of the listing, though I wouldn’t get too excited just yet. I’ve bought a LOT of stuff on Alibaba, including many electric vehicles, and the too-good-to-be-true price is always exactly that. In my experience, you can multiply the Alibaba price by 3-4x to get the actual landed price for things like these. Even so, $3,000-$4,000 wouldn’t be a terrible price, considering a lot of electric trikes stateside already cost that much and don’t even come with a quad-set of vegetable baskets on board!

I should also put my normal caveat in here about not actually buying one of these. Please, please don’t try to buy one of these awesome cargo e-trikes. This is a silly, tongue-in-cheek weekend column where I scour the ever-entertaining underbelly of China’s massive e-commerce site Alibaba in search of fun, quirky, and just plain awesomely weird electric vehicles. While I’ve successfully bought several fun things on the platform, I’ve also gotten scammed more than once, so this is not for the timid or the tight-budgeted among us.

That isn’t to say that some of my more stubborn readers haven’t followed in my footsteps before, ignoring my advice and setting out on their own wild journey. But please don’t be the one who risks it all and gets nothing in return. Don’t say I didn’t warn you; this is the warning.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending