Connect with us

Published

on

Four astronauts, three from NASA and one from the European Space Agency, arrived at the International Space Station on Thursday and docked their SpaceX Crew Dragon capsule with the orbiting laboratory to begin a six-month science mission.

The rendezvous came about 21 hours after the team and its capsule were launched atop a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Cape Canaveral, Florida, on Wednesday night, following a string of weather delays that postponed the liftoff for a week and a half.

The docking took place about 6:30 p.m. EST (5am IST on Friday) while the Crew Dragon vehicle, dubbed Endurance, and the space station were flying about 260 miles (420 km) above the eastern Caribbean Sea, according to NASA.

The Endurance crew consists of three American NASA astronauts — flight commander Raja Chari, 44, mission pilot Tom Marshburn, 61, and mission specialist Kayla Barron, 34 — as well as German astronaut Matthias Maurer, 51, a mission specialist from the European Space Agency.

On arrival, the crew took inventory, conducted standard leak checks and pressurized the space between the spacecraft in preparation for opening the hatch to the space station about two hours later.

A live NASA video feed from the station showed the new arrivals floating headfirst through a padded passageway from their capsule into the orbiting outpost.

They were welcomed aboard with hugs from the three current space station occupants – Russian cosmonauts Pyotr Dubrov and Oleg Novitskiy and NASA astronaut Mark Vande Hei, who shared a Soyuz flight with his Roscosmos crewmates to the complex.

Astronaut wings

Endeavor’s second-in-command, Marshburn — a medical doctor and former NASA flight surgeon — has logged two previous spaceflights to the space station and four spacewalks.

Maurer, a materials science engineer, was making his debut spaceflight, as were Chari, a US Air Force combat jet and test pilot, and Barron, a US Navy submarine officer and nuclear engineer. Shortly after coming aboard, Marshburn pinned astronaut wings to the collars of his three rookie colleagues amid handshakes and smiles.

Both Chari and Barron also are among the first group of 18 astronauts selected for NASA’s upcoming Artemis missions, aimed at returning humans to the moon later this decade, over a half century after the Apollo lunar program ended.

“I think we all loved the ride up here,” Chari said during brief remarks in a welcoming ceremony webcast from the station. “It was way smoother than we could have imagined.”

The SpaceX Dragon also delivered more than 4,000 pounds (1,800 kg) of hardware and research equipment, NASA said.

The crew arriving on Thursday was officially designated “Crew 3” – the third full-fledged “operational” crew that NASA and SpaceX have flown together to the space station after a two-astronaut test run in May 2020.

“Crew 2” returned safely to Earth from the space station on Monday with a splashdown in the Gulf of Mexico off Florida that capped a record 199 days in orbit.

SpaceX, the rocket company formed in 2002 by billionaire Elon Musk, founder of electric car maker Tesla, has logged a total of 15 human spaceflights in 17 months, including its astro-tourism launch in September of the first all-civilian crew sent to Earth orbit without professional astronauts.

The space station, spanning the size of an American football field end to end, has been continuously occupied since November 2000, operated by an international partnership of five space agencies from 15 countries.

An international crew of at least seven people typically lives and works aboard the platform while traveling 5 miles (8 km) per second, orbiting Earth about every 90 minutes.

© Thomson Reuters 2021


Continue Reading

Science

A Nearby Supernova May End Dark Matter Search, Claims New Study

Published

on

By

A Nearby Supernova May End Dark Matter Search, Claims New Study

The pursuit of understanding dark matter, which comprises 85 percent of the universe’s mass, could take a significant leap forward with a nearby supernova. Researchers at the University of California, Berkeley, led by Associate Professor of Physics Benjamin Safdi, have theorised that the elusive particle known as the axion might be detected within moments of gamma rays being emitted from such an event. Axions, predicted to emerge during the collapse of a massive star’s core into a neutron star, could transform into gamma rays in the presence of intense magnetic fields, offering a potential breakthrough in physics.

Potential Role of Gamma-Ray Telescopes

The study was published in Physical Review Letters and revealed that the gamma rays produced from axions could confirm the particle’s mass and properties if detected. The Fermi Gamma-ray Space Telescope, currently the only gamma-ray observatory in orbit, would need to be pointed directly at the supernova, with the likelihood of this alignment estimated at only 10 percent. A detection would revolutionise dark matter research, while the absence of gamma rays would constrain the range of axion masses, rendering many existing dark matter experiments redundant.

Challenges in Catching the Event

For detection, the supernova must occur within the Milky Way or its satellite galaxies—an event averaging once every few decades. The last such occurrence, supernova 1987A, lacked sensitive enough gamma-ray equipment. Safdi emphasised the need for preparedness, proposing a constellation of satellites, named GALAXIS, to ensure 24/7 sky coverage.

Axion’s Theoretical Importance

The axion, supported by theories like quantum chromodynamics (QCD) and string theory, bridges gaps in physics, potentially linking gravity with quantum mechanics. Unlike neutrinos, axions could convert into photons in strong magnetic fields, providing unique signals. Laboratory experiments like ABRACADABRA and ALPHA are also probing for axions, but their sensitivity is limited compared to the scenario of a nearby supernova. Safdi expressed urgency, noting that missing such an event could delay axion detection by decades, underscoring the high stakes of this astrophysical endeavour.

Continue Reading

Science

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Published

on

By

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Intelligent extraterrestrial civilisations might be utilising stars as massive interstellar vehicles to explore the galaxy, according to a theory proposed by Clement Vidal, a philosopher at Vrije Universiteit Brussel in Belgium. His research suggests that alien species could potentially accelerate their binary star systems to traverse vast cosmic distances. While such a concept is purely hypothetical and unproven, Vidal’s recent paper, which has not undergone peer review, raises intriguing possibilities about advanced extraterrestrial engineering.

Concept of Moving Star Systems

The study was published in the Journal of the British Interplanetary Society. As per a report by LiveScience, the idea revolves around the notion that alien civilisations, instead of building spacecraft for interstellar travel, might manipulate entire star systems to travel across the galaxy. Vidal highlights binary star systems, particularly those involving neutron stars and smaller companion stars, as ideal candidates. Neutron stars, due to their immense gravitational energy, could serve as anchors for devices designed to propel the system by selectively ejecting stellar material.

Vidal explained in the paper that uneven heating or manipulation of magnetic fields on a star’s surface could cause it to eject material in one direction. This process would create a reactionary thrust, propelling the binary system in the opposite direction. The concept provides a way to travel while preserving planetary ecosystems, making it a theoretically viable method for species reliant on their home systems.

Known Examples with High Velocities

Astronomers have identified hypervelocity stars, such as the pulsars PSR J0610-2100 and PSR J2043+1711, which exhibit high accelerations. While their movements are believed to be natural phenomena, Vidal suggests they could be worth further investigation to rule out potential artificial influences.

This theory adds an unconventional angle to the search for intelligent life, expanding possibilities beyond traditional methods of exploration like searching for signals or probes. The research underscores the importance of considering advanced and unconventional methods aliens might employ to navigate the galaxy.

Continue Reading

Science

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

Published

on

By

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

NASA’s Hubble Space Telescope has provided new insights into the young star FU Orionis, located in the constellation Orion. Observations have uncovered extreme temperatures in the inner region of its accretion disk, challenging current models of stellar accretion. Using Hubble’s Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph, astronomers captured far-ultraviolet and near-ultraviolet spectra, revealing the disk’s inner edge to be unexpectedly hot, with temperatures reaching 16,000 kelvins—almost three times the Sun’s surface temperature.

A Star’s Bright Outburst Explained

First observed in 1936, FU Orionis became a hundred times brighter in months and has remained a unique object of study. Unlike typical T Tauri stars, its accretion disk touches the stellar surface due to instabilities. These are caused by the disk’s large mass, interactions with companion stars, or material falling inwards. Lynne Hillenbrand, a co-author from Caltech, in a statement said that the ultraviolet brightness seen exceeded predictions, revealing a highly dynamic interface between the star and its disk.

Implications for Planet Formation

As per a report by NASA, the study holds significant implications for planetary systems forming around such stars. The report further quoted Adolfo Carvalho, lead author of the study, saying that while distant planets in the disk may experience altered chemical compositions due to outbursts, planets forming close to the star could face disruption or destruction. This revised model provides critical insights into the survival of rocky planets in young star systems, he further added.

Future Investigations on FU Orionis

The research team continues to examine spectral emission lines in the collected data, aiming to map gas movement in the star’s inner regions. Hillenbrand noted that FU Orionis offers a unique opportunity to study the mechanisms at play in eruptive young stars. These findings, published in The Astrophysical Journal Letters, showcase the ongoing value of Hubble’s ultraviolet capabilities in advancing stellar science.

Continue Reading

Trending