Connect with us

Published

on

A question that has often intrigued scientists is from where do all the heavy metals, including gold and uranium, come from? How did they originate? While all heavy metals have formed under extreme conditions inside stars or due to stellar explosions and collision of neutron stars, the question remains: when and why was the material ejected and whether heavy elements can be produced in any other way. Researchers now say that the synthesis of heavy elements is typical for certain black holes orbited by an accretion disc of dense and hot matter.

While a black hole is a region where gravity is so strong that nothing can escape from it, the accretion disc is composed of material which has come close to a black hole but not fallen into it. This system is formed by the merger of two massive neutron stars or during the collapse and explosion of a rotating star. Researchers from Germany’s GSI Helmholtz Centre for Heavy Ion Research and their colleagues from Belgium and Japan said that the internal composition of such accretion discs has so far not been well understood.

“In our study, we systematically investigated for the first time the conversion rates of neutrons and protons for a large number of disc configurations by means of elaborate computer simulations, and we found that the discs are very rich in neutrons as long as certain conditions are met,” Dr Oliver Just, from the Relativistic Astrophysics group of GSI’s research division, told Phys.org.

Just said the decisive factor is the total mass of the disc, meaning the bigger the disc, the more often neutrons are formed and are available for the synthesis of heavy elements.

The study shows that the optimal disc mass for prolific production of heavy elements is about 0.01 to 0.1 solar masses. It provides strong evidence that neutron star mergers producing accretion discs with these exact masses could be the point of origin for a large fraction of the heavy elements. However, it is not yet clear whether and how frequently such accretion discs occur.

The findings have been published in the Monthly Notices of the Royal Astronomical Society journal.


For the latest tech news and reviews, follow Gadgets 360 on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.

Tesla 2020 California Crash: US Transportation Safety Board Closes Probe, No Action Taken

Nokia Plans to Launch Cloud-Based Software Subscription Service for Telecom Companies

Related Stories

Continue Reading

Science

NASA’s ESCAPADE Mission Will Send Twin Probes to Uncover Mars’s Atmospheric Secrets

Published

on

By

NASA’s ESCAPADE mission will launch twin mini-satellites, Blue and Gold, to Mars aboard Blue Origin’s New Glenn. The probes will study how solar wind stripped away Mars’s atmosphere and water, helping scientists understand the Red Planet’s lost climate and its transformation into the dry world we see today.

Continue Reading

Science

Webb Finds Phosphorus-Bearing Gas in an Ancient Brown Dwarf

Published

on

By

NASA’s James Webb Space Telescope has detected phosphine (PH₃) in the atmosphere of the ancient brown dwarf Wolf 1130C, about 54 light-years away in Cygnus. This marks the first confirmed detection of a phosphorus-bearing gas in such a metal-poor object. The finding surprises astronomers, as phosphine was previously undetected in similar brown dwarfs, challenging …

Continue Reading

Science

Bad Weather Delays Blue Origin’s New Glenn Launch of NASA’s Mars Mission

Published

on

By

Blue Origin’s New Glenn launch was postponed on November 9, 2025, because of heavy clouds at Cape Canaveral. The rocket was carrying NASA’s twin ESCAPADE orbiters to study Mars’s atmosphere. The delay came a day before the FAA’s new daytime launch ban during a federal shutdown. The next attempt is scheduled for November 12.

Continue Reading

Trending