Connect with us

Published

on

Ten months after launch, NASA’s asteroid-deflecting DART spacecraft neared a planned impact with its target on Monday in a test of the world’s first planetary defense system, designed to prevent a doomsday collision with Earth.

The cube-shaped “impactor” vehicle, roughly the size of a vending machine with two rectangular solar arrays, was on course to fly into the asteroid Dimorphos, about as large as a football stadium, and self-destruct around 7pm EDT (4:30 IST) some 6.8 million miles (11 million km) from Earth.

The mission’s finale will test the ability of a spacecraft to alter an asteroid’s trajectory with sheer kinetic force, plowing into the object at high speed to nudge it astray just enough to keep our planet out of harm’s way.

It marks the world’s first attempt to change the motion of an asteroid, or any celestial body.

DART, launched by a SpaceX rocket in November 2021, has made most of its voyage under the guidance of NASA’s flight directors, with control to be handed over to an autonomous on-board navigation system in the final hours of the journey.

Monday evening’s planned impact is to be monitored in real time from the mission operations center at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

DART’s celestial target is an asteroid “moonlet” about 560 feet (170 metres) in diameter that orbits a parent asteroid five times larger called Didymos as part of a binary pair with the same name, the Greek word for twin.

Neither object presents any actual threat to Earth, and NASA scientists said their DART test cannot create a new existential hazard by mistake.

Dimorphos and Didymos are both tiny compared with the cataclysmic Chicxulub asteroid that struck Earth some 66 million years ago, wiping out about three-quarters of the world’s plant and animal species including the dinosaurs.

Smaller asteroids are far more common and pose a greater theoretical concern in the near term, making the Didymos pair suitable test subjects for their size, according to NASA scientists and planetary defense experts.

Also, their relative proximity to Earth and dual-asteroid configuration make them ideal for the first proof-of-concept mission of DART, short for Double Asteroid Redirection Test.

Robotic mission suicide

The mission represents a rare instance in which a NASA spacecraft must ultimately crash to succeed.

The plan is for DART to fly directly into Dimorphos at 15,000 miles per hour (24,000 kph), bumping it hard enough to shift its orbital track closer to its larger companion asteroid.

Cameras on the impactor and on a briefcase-sized mini-spacecraft released from DART days in advance are designed to record the collision and send images back to Earth.

DART’s own camera is expected to return pictures at the rate of one image per second during its final approach, with those images streaming live on NASA TV starting an hour before impact, according to APL.

The DART team said it expects to shorten the orbital track of Dimorphos by 10 minutes but would consider at least 73 seconds a success, proving the exercise as a viable technique to deflect an asteroid on a collision course with Earth – if one were ever discovered. A small nudge to an asteroid millions of miles away could be sufficient to safely reroute it away from the planet.

The test’s outcome will not be known until a new round of ground-based telescope observations of the two asteroids in October. Earlier calculations of the starting location and orbital period of Dimorphos were confirmed during a six-day observation period in July.

DART is the latest of several NASA missions in recent years to explore and interact with asteroids, primordial rocky remnants from the solar system’s formation more than 4.5 billion years ago.

Last year, NASA launched a probe on a voyage to the Trojan asteroid clusters orbiting near Jupiter, while the grab-and-go spacecraft OSIRIS-REx is on its way back to Earth with a sample collected in October 2020 from the asteroid Bennu.

The Dimorphos moonlet is one of the smallest astronomical objects to receive a permanent name and is one of 27,500 known near-Earth asteroids of all sizes tracked by NASA. Although none are known to pose a foreseeable hazard to humankind, NASA estimates that many more asteroids remain undetected in the near-Earth vicinity.

NASA has put the entire cost of the DART project at $330 million (roughly Rs. 2,700 crore), well below that of many of the space agency’s most ambitious science missions.

© Thomson Reuters 2022


Continue Reading

Science

Astronaut Captures Rare ‘Gigantic Jet’ Lightning Extending 50 Miles Above Earth

Published

on

By

Astronaut Captures Rare ‘Gigantic Jet’ Lightning Extending 50 Miles Above Earth

A rare ‘gigantic jet’ of lightning has been photographed from space, extending nearly 50 miles above the U.S. coastline. The image was taken by an astronaut aboard the International Space Station (ISS) on November 19, 2024, but was not immediately shared by space agencies. The phenomenon was later discovered on NASA’s Gateway to Astronaut Photography of Earth website by photographer Frankie Lucena, who specialises in capturing rare lightning events. The images were subsequently highlighted by Spaceweather.com on February 26.

Jet Likely Originated Over Louisiana

According to Spaceweather.com, the ISS was positioned over the Gulf of Mexico at the time of the capture, suggesting that the lightning jet likely originated from a thunderstorm near New Orleans. Due to dense cloud cover in the image, the precise location could not be determined. Four images of lightning were identified in the astronaut’s photography sequence, but only one captured the distinct upward-shooting jet.

Understanding Gigantic Jets

Gigantic jets are powerful electrical discharges that travel upward from thunderstorms when charge layers within the clouds become inverted. Unlike conventional lightning that strikes downward, these jets extend into the ionosphere, the atmospheric layer beginning around 50 miles above the Earth’s surface. As per Spaceweather.com, these jets emit a blue glow due to interactions with nitrogen in the upper atmosphere and last for less than a second.

Uncommon but Extremely Powerful

Reports indicate that while gigantic jets were first documented in 2001, scientists estimate that around 1,000 could occur annually, though most go undetected. The most powerful recorded jet was observed in May 2018 over Oklahoma, carrying nearly 60 times the energy of a typical lightning strike. These events often conclude with red branching tendrils, similar to lightning phenomena known as sprites, but classified as separate occurrences.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


Solar Storm to Trigger Northern Lights in US: Visibility, Timing & Impact



Infinix GT 30 Pro Key Features Surface Online; Tipped to Get Gaming Trigger Buttons

Continue Reading

Science

Solar Storm to Trigger Northern Lights in US: Visibility, Timing & Impact

Published

on

By

Solar Storm to Trigger Northern Lights in US: Visibility, Timing & Impact

A solar storm is set to reach Earth tonight, with potential geomagnetic activity that could make the northern lights visible as far south as New York and Idaho. The event is the result of a coronal mass ejection (CME) from the Sun, which was recorded on March 1. The Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA) has classified this as a G1-level geomagnetic storm, with a possibility of stronger G2 conditions. As a result, skywatchers in mid-latitudes may witness the aurora borealis in areas where the skies remain clear.

Geomagnetic Storm Forecast and Impact

According to NOAA’s Space Weather Prediction Center, the CME is expected to make contact with Earth’s magnetic field between March 4 and March 5. The intensity of the storm is predicted to peak between 7:00 p.m. EST and 10:00 p.m. EST on March 5. While a G1 storm is considered minor, space weather physicist Tamitha Skov has indicated that G2 storm conditions remain a possibility, increasing the chances of a more widespread auroral display.

Geomagnetic storms occur when charged particles from the Sun interact with Earth’s magnetosphere, potentially affecting satellite communications, power grids, and GPS accuracy. Experts have advised that radio operators, GPS users, and drone pilots may experience signal disruptions, especially during nighttime hours when such interference is more pronounced.

Visibility and Viewing Conditions

As per reports, aurora visibility will largely depend on atmospheric clarity and light pollution levels. NOAA’s storm classification system places G1 storms as minor, meaning that the northern lights will likely be seen closer to high-latitude regions. If G2 storm conditions occur, visibility could extend further south. Observers are advised to find dark locations away from city lights for the best viewing experience.

For real-time updates and forecasts, space weather monitoring agencies continue to track the storm’s progression.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

NASA Tests Advanced Infrared Technology to Improve Wildfire Monitoring

Published

on

By

NASA Tests Advanced Infrared Technology to Improve Wildfire Monitoring

Wildfires in California during January caused widespread destruction, affecting communities and ecosystems. To improve wildfire monitoring and response, NASA deployed a new scientific instrument capable of capturing high-resolution thermal infrared images. The Compact Fire Infrared Radiance Spectral Tracker (c-FIRST) was tested aboard NASA’s B200 King Air aircraft over fire-hit areas in Pacific Palisades and Altadena. The instrument, developed for satellite-based missions, was assessed for its ability to provide real-time data on active and smoldering fires. Scientists aim to use this technology to enhance understanding of wildfire behavior and improve mitigation strategies.

Enhanced Fire Detection and Data Collection

According to reports, the c-FIRST instrument was developed and is managed by NASA’s Jet Propulsion Laboratory (JPL), with support from NASA’s Earth Science Technology Office. The compact design allows it to be deployed on airborne platforms, simulating satellite missions while providing near-instantaneous observations. The system captures a wide range of fire characteristics, including temperature variations across large areas. Unlike previous infrared imaging systems, c-FIRST can detect extremely high temperatures exceeding 1,000 degrees Fahrenheit (550 degrees Celsius) with improved clarity.

In a statement, Sarath Gunapala, principal investigator for c-FIRST at NASA JPL, noted that current fire observation instruments do not fully capture fire attributes across the Earth system. He explained that limitations in past imaging technologies have resulted in gaps in data concerning wildfire frequency, size, and intensity.

Potential Benefits for Fire Management

As per sources, c-FIRST is expected to provide critical insights for firefighting agencies by identifying smoldering fires that could reignite under changing wind conditions. In a report, Gunapala stated that the instrument’s ability to distinguish such fires in near real-time could support more effective wildfire management efforts.

KC Sujan, operations engineer for the B200 King Air, told that the aircraft’s flight characteristics made it ideal for testing the instrument. With further evaluation, c-FIRST is expected to be integrated into future satellite missions, potentially improving global wildfire monitoring capabilities.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Trending