Connect with us

Published

on

NASA’s historic uncrewed mission to the Moon is facing fresh difficulties. After technical problems derailed two launch attempts several weeks ago, a new liftoff of the Artemis 1 mission scheduled for Tuesday is now threatened by a storm gathering in the Caribbean.

The storm, which has not yet been assigned a name, is currently located south of the Dominican Republic.

But it is expected to grow into a hurricane in the coming days and could move north to Florida, home to the Kennedy Space Center, from which the rocket is set to launch.

“Our plan A is to stay to course and to get the launch off on September 27,” Mike Bolger, NASA’s exploration ground systems manager, told reporters on Friday. “But we realised we also need to be really paying attention and thinking about a plan B.”

That would entail wheeling the giant Space Launch System rocket back to the Vehicle Assembly Building, known as VAB.

“If we were to go down to Plan B we need a couple days to pivot from our current tanking test or launch configuration to execute rollback and get back into the protection of the VAB,” Bolger said, adding that a decision should be made by early afternoon on Saturday.

On the launch pad the orange and white SLS rocket can withstand wind gusts of up to 137 kilometres per hour. But if it has to be sheltered, the current launch window, which runs until October 4, will be missed.

The next launch window will run from October 17 to 31, with one possibility of take-off per day, except from October 24-26 and 28.

A successful Artemis 1 mission will come as a huge relief to the US space agency, after years of delays and cost overruns. But another setback would be a blow to NASA, after two previous launch attempts were scrapped when the rocket experienced technical glitches including a fuel leak.

The launch dates depend on NASA receiving a special waiver to avoid having to retest batteries on an emergency flight system that is used to destroy the rocket if it strays from its designated range to a populated area.

On Tuesday the launch window will open at 11:37 local time and will last 70 minutes.

If the rocket takes off that day, the mission will last 39 days before it lands in the Pacific Ocean on November 5.

The Artemis 1 space mission hopes to test the SLS as well as the unmanned Orion capsule that sits atop, in preparation for future Moon-bound journeys with humans aboard.

Mannequins equipped with sensors are standing in for astronauts on the mission and will record acceleration, vibration and radiation levels.

The next mission, Artemis 2, will take astronauts into orbit around the Moon without landing on its surface.

The crew of Artemis 3 is to land on the Moon in 2025 at the earliest.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Over 4,300 Koalas Found in Newcastle’s Fringe Forests by Drone Survey

Published

on

By

Over 4,300 Koalas Found in Newcastle’s Fringe Forests by Drone Survey

In a landmark survey, University of Newcastle researchers mapped a previously hidden koala population on the outskirts of Newcastle, NSW. The study estimated about 4,357 koalas across roughly 67,300 hectares of bushland (208 sites). They also found more than 290 koalas in Sugarloaf State Conservation Area, a region with few prior records. Local researcher Daryn McKenny, who grew up nearby and first reported seeing a koala there years ago, contributed his knowledge and sightings to the project. The findings show koalas can survive – and even thrive – in peri-urban forests, underscoring the need to protect these fringe habitats.

Hidden Koalas on Newcastle’s Fringe

According to the study, the survey estimated 4,357 koalas in 208 bushland sites around Newcastle. Lead author Shelby Ryan said that the drone surveys allowed the team to find koalas within minutes in areas that had taken hours on foot. Seven national parks were sampled (about 10% of each) with multiple night surveys, and a statistical model extrapolated these counts across the landscape. Maria National Park had the highest density (about 521 koalas per 3,350 hectares), while fire-affected parks from the 2019-20 fires hosted roughly two-thirds fewer koalas.

Survey Methods and Conservation Implications

Thermal imaging revealed koalas as yellow hotspots, which were then confirmed by a spotlight to identify the animal. The team used a statistical model accounting for terrain slope, tree coverage, and soil moisture to extrapolate koala numbers across the landscape. University of Newcastle’s Dr. Ryan Witt said that this model can even extend estimates to private or otherwise inaccessible lands that were not directly surveyed.

WWF-Australia – which co-funded the work – hailed the findings as critical for its goal of doubling koala numbers by 2050, noting that accurate abundance estimates are the “holy grail” of koala conservation. 

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Threads Begins Testing the Ability to Send DMs Without Switching to Instagram



Oppo K13x 5G Design, Colour Options Revealed; Tipped to Launch Later This Month

Continue Reading

Science

NASA F-15 Flights Validate Supersonic Tools for X-59 Quiet Flight Quesst Mission

Published

on

By

NASA F-15 Flights Validate Supersonic Tools for X-59 Quiet Flight Quesst Mission

High above the Mojave Desert, NASA’s two F-15 jets completed a pivotal series of May flights to validate airborne tools essential for the agency’s Quesst mission, aimed at enabling quiet supersonic travel. Flying faster than the speed of sound, the jets replicated the conditions under which NASA’s experimental X-59 aircraft will fly. The campaign tested shockwave sensors, geospatial guidance systems, and schlieren imaging tools designed to detect and visualise the aircraft’s sonic “thump”—a softer alternative to the traditional boom—when the X-59 cruises at Mach 1.4 and above 50,000 feet.

As per NASA’s Armstrong Flight Research Centre, the dual-jet validation effort was led by the SCHAMROQ team, which transformed an F-15D from a combat aircraft into a research platform. Along with an F-15B, the aircraft were used to perform simultaneous flight operations—called dual ship flights—to validate three core systems: a near-field shock-sensing probe, an airborne schlieren photography setup, and a GPS-driven Airborne Location Integrating Geospatial Navigation System (ALIGNS). These efforts collectively confirm the systems’ readiness for X-59 data capture.

Cheng Moua, NASA’s project lead for SCHAMROQ, likened the series to a “graduation exercise”, where all tools were tested in their final configuration. The schlieren system, in particular, demanded intense precision, requiring a high-speed handheld camera to track the X-59’s airflow against the sun’s backdrop while the aircraft flew through a tight 100-foot alignment corridor.

The successful validation shows that NASA’s specialised tools are ready to record the X-59’s sound signature. This is a key step towards establishing that it is conceivable, quantifiable, and repeatable to fly supersonic over land without making too much noise. The information will help determine the future of commercial aviation regulation and technology, making the promise of quicker, quieter flight travel more likely.

Continue Reading

Science

NASA’s Chandra Spots Unexpectedly Strong Jet from Distant Black Hole at Cosmic Noon

Published

on

By

NASA’s Chandra Spots Unexpectedly Strong Jet from Distant Black Hole at Cosmic Noon

A black hole 11.6 billion light years from Earth has unleashed a compelling jet, according to new observations from NASA’s Chandra X-ray Observatory and the National Radio Astronomy Observatory’s Very Large Array (VLA). Seen when the universe was at its early “cosmic noon”, or about 3 billion years after the Big Bang, the jet is visible to telescopes due to its interactions with the dense cosmic microwave background (CMB), a faint glow left over from the universe’s birth. Researchers confirmed two jets from different black holes, their particles racing at up to 99% the speed of light, offering rare insight into early supermassive black hole activity.

Chandra Detects Ultra-Fast Black Hole Jets Using X-Ray Vision and Statistical Relativity Model

As per NASA’s Chandra press release, the jets — from quasars J1405+0415 and J1610+1811 — were detected due to both the Chandra telescope’s sharp X-ray vision and the denser CMB of the early universe. When electrons in the jets collide with the CMB, they emit detectable X-ray signals. These observations were made possible by a statistical method that factors in how relativistic effects brighten jets that are angled toward Earth, solving a decades-old problem in jet detection.

The researchers determined that one jet’s particles were moving between 95 percent and 99 percent the speed of light, while the other reached up to 98 percent. Viewing angles were estimated to be 9 and 11 degrees, respectively. Despite originating from opposite directions, both jets appeared bright — a consequence of Einstein’s special relativity, which causes jets aimed at Earth to visually intensify, masking their actual orientation.

The findings, presented by Jaya Maithil of the Centre for Astrophysics | Harvard & Smithsonian at the 246th meeting of the American Astronomical Society, underline how fast-growing black holes shaped galaxy formation at cosmic noon. The dual detector is an example of how modern statistical models and X-ray measurements can perhaps access the edge of the universe’s most ancient, fiery moments.

These new ideas are informing us about how supermassive black holes work during the peak growth of galaxies. The results, which will be published in The Astrophysical Journal, add to a growing body of evidence suggesting that black hole jets in the most distant reaches of the universe can hold as much, if not more, energy than all the gas in their host galaxies.

Continue Reading

Trending