Connect with us

Published

on

Ten months after launch, NASA’s asteroid-deflecting DART spacecraft neared a planned impact with its target on Monday in a test of the world’s first planetary defense system, designed to prevent a doomsday collision with Earth.

The cube-shaped “impactor” vehicle, roughly the size of a vending machine with two rectangular solar arrays, was on course to fly into the asteroid Dimorphos, about as large as a football stadium, and self-destruct around 7pm EDT (4:30 IST) some 6.8 million miles (11 million km) from Earth.

The mission’s finale will test the ability of a spacecraft to alter an asteroid’s trajectory with sheer kinetic force, plowing into the object at high speed to nudge it astray just enough to keep our planet out of harm’s way.

It marks the world’s first attempt to change the motion of an asteroid, or any celestial body.

DART, launched by a SpaceX rocket in November 2021, has made most of its voyage under the guidance of NASA’s flight directors, with control to be handed over to an autonomous on-board navigation system in the final hours of the journey.

Monday evening’s planned impact is to be monitored in real time from the mission operations center at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

DART’s celestial target is an asteroid “moonlet” about 560 feet (170 metres) in diameter that orbits a parent asteroid five times larger called Didymos as part of a binary pair with the same name, the Greek word for twin.

Neither object presents any actual threat to Earth, and NASA scientists said their DART test cannot create a new existential hazard by mistake.

Dimorphos and Didymos are both tiny compared with the cataclysmic Chicxulub asteroid that struck Earth some 66 million years ago, wiping out about three-quarters of the world’s plant and animal species including the dinosaurs.

Smaller asteroids are far more common and pose a greater theoretical concern in the near term, making the Didymos pair suitable test subjects for their size, according to NASA scientists and planetary defense experts.

Also, their relative proximity to Earth and dual-asteroid configuration make them ideal for the first proof-of-concept mission of DART, short for Double Asteroid Redirection Test.

Robotic mission suicide

The mission represents a rare instance in which a NASA spacecraft must ultimately crash to succeed.

The plan is for DART to fly directly into Dimorphos at 15,000 miles per hour (24,000 kph), bumping it hard enough to shift its orbital track closer to its larger companion asteroid.

Cameras on the impactor and on a briefcase-sized mini-spacecraft released from DART days in advance are designed to record the collision and send images back to Earth.

DART’s own camera is expected to return pictures at the rate of one image per second during its final approach, with those images streaming live on NASA TV starting an hour before impact, according to APL.

The DART team said it expects to shorten the orbital track of Dimorphos by 10 minutes but would consider at least 73 seconds a success, proving the exercise as a viable technique to deflect an asteroid on a collision course with Earth – if one were ever discovered. A small nudge to an asteroid millions of miles away could be sufficient to safely reroute it away from the planet.

The test’s outcome will not be known until a new round of ground-based telescope observations of the two asteroids in October. Earlier calculations of the starting location and orbital period of Dimorphos were confirmed during a six-day observation period in July.

DART is the latest of several NASA missions in recent years to explore and interact with asteroids, primordial rocky remnants from the solar system’s formation more than 4.5 billion years ago.

Last year, NASA launched a probe on a voyage to the Trojan asteroid clusters orbiting near Jupiter, while the grab-and-go spacecraft OSIRIS-REx is on its way back to Earth with a sample collected in October 2020 from the asteroid Bennu.

The Dimorphos moonlet is one of the smallest astronomical objects to receive a permanent name and is one of 27,500 known near-Earth asteroids of all sizes tracked by NASA. Although none are known to pose a foreseeable hazard to humankind, NASA estimates that many more asteroids remain undetected in the near-Earth vicinity.

NASA has put the entire cost of the DART project at $330 million (roughly Rs. 2,700 crore), well below that of many of the space agency’s most ambitious science missions.

© Thomson Reuters 2022


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Webb Telescope Uncovers Hidden Active Galactic Nuclei

Published

on

By

Webb Telescope Uncovers Hidden Active Galactic Nuclei

An obscured population of huge and massive black holes has been revealed by the James Webb Space Telescope. This discovery could bridge the gap between quasars and the Little Red Dots. These are active galactic nuclei galaxies (AGNs), overlapped or blurred by active blackholes, occupied by dust. Their bright nature makes them detectable in spite of the dust surrounding them. However, during December 2022, astronomers found a new type of AGN that they called Little Red Dots, because they appear as tiny, fat red spots.

Connection of AGN with Quasars is Still a Mystery

For more than a decade, the study has been led by Dale Kocevski, an astronomer at Colby College. Their team includes scientists like Jorryt Matthee, an astrophysicist at the Institute of Science and Technology, who contributed to the understanding of little dots and their connection with quasars. Their connection is still a mystery that prompts them to find the objects with properties in between.

The Old Universe Abundantly Occupied by Hidden Quasars

In a new study Yoshiki Matsuoka, associate professor at the Research Center for Space, told Live Science, the scientists are surprised to find that the not-so-clear quasars had occupied a large portion of the early universe. Out of 13 galaxies, 9 were found to have clear signs of active supermassive blackholes in connection with the heavy dust that hides them.

Findings Can Give Insights into the Study of Universe Evolution

Jorryt Matthee, the head of the old research, said that although there are abundant new objects found in the universe, the gap between the two known populations found by JWST is too high, and thus, there is a possibility that these belong to that missing population lying in between the known ones, providing fresh insights into how these giants formed and evolved in the early universe. The findings were reported on May 7, 2025, in the preprint database arXiv.

Future Study Scopes to Unveil the Nature of LRD

The team is planning to observe 30 more objects from the sample of the Subaru Telescope. This can reveal that the behaviour of the hidden quasars aligns with Little Red Dots. Furthermore, the gases that surround them can reveal the mysterious nature of LRD.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kedarnath Yatra Helicopter Booking Online Scam: Uttarakhand Police STF Reportedly Cracks Down on Cybercriminals

Continue Reading

Science

SpaceX Starship Flight 9 Reuses Booster, Gathers Key Data Despite Loss

Published

on

By

SpaceX Starship Flight 9 Reuses Booster, Gathers Key Data Despite Loss

SpaceX launched its ninth Starship test flight on May 27 that featured the first-ever significant reuse of Starship hardware. As planned on Flight 9, Starship’s two stages separated successfully, and the upper stage even reached space. However, both were ultimately lost before completing their objectives. Despite these setbacks, the mission yielded valuable data which inspires SpaceX’s iterative approach to innovation as it aims to create a fully reusable launch system for space missions. This test flight exhibited successful reuse of a Super Heavy booster and aimed to demonstrate improved hardware performance.

Previous test flights

According to official site of SpaceX, Starship’s two stages are one giant booster called Super Heavy and a 171-foot-tall (52 meters) upper-stage spacecraft known as Starship, or simply “Ship.” Both are powered by SpaceX’s new Raptor engine — 33 of them for Super Heavy and six for Ship.

On Flight 7 and Flight 8 the Super Heavy performed flawlessly, acing its engine burn and then returning to Starbase for a catch by the launch tower’s “chopstick” arms. But Ship had problems: It exploded less than 10 minutes after launch on both missions, raining debris down on the Turks and Caicos Islands and The Bahamas, respectively.

Advancements in flight 9

In flight 9, SpaceX reused a Super Heavy booster for the first time, swapping out just four of its 33 Raptor engines after its initial flight in January. The booster also conducted a new atmospheric entry experiment, entering at a higher angle to collect data on aerodynamic control. Meanwhile, Ship (the upper stage) was tasked with deploying eight dummy Starlink satellites.

Despite the promising advances, Flight 9 encountered several failures. Super Heavy broke apart roughly six minutes after launch during its return burn, and Ship lost control due to a fuel tank leak. The upper stage began tumbling, which prevented a planned in-space engine relight and led to a destructive reentry over the Indian Ocean. Still, SpaceX gained critical data, particularly on tile performance and active cooling systems.

Continue Reading

Science

7,100-Year-Old Skeleton Reveals Unknown Human Lineage in China

Published

on

By

7,100-Year-Old Skeleton Reveals Unknown Human Lineage in China

A new study on a 7,100-year-old skeleton from China has revealed a “ghost” lineage that only existed in theories until now. Skeleton of the early Neolithic woman, known as Xingyi_EN, unearthed at the Xingyi archaeological site in southwestern China’s Yunnan province. Her DNA links her to a deeply divergent human population that may have contributed to the ancestry of modern Tibetans. This study also reveals a distinct Central Yunnan ancestry connected to early Austroasiatic-speaking groups. This discovery makes Yunnan as a key region to understand the ancient genetic history of East and Southeast Asia. The detailed analysis of 127 human genomes from southwestern China is published in a study in the journal Science.

According to the study, radiocarbon dating indicates Xingyi_EN lived around 7,100 years ago and isotope analysis suggests she lived as a hunter-gatherer. Genetic sequencing revealed her ancestry from a deeply diverged human lineage—now named the Basal Asian Xingyi lineage. This lineage diverged from other modern human groups over 40,000 years ago and remained isolated for thousands of years without mixing with other populations.

This “ghost” lineage does not match DNA from Neanderthals or Denisovans but appears to have later contributed to the ancestry of some modern Tibetans. Xingyi_EN represents the first physical evidence of this previously unknown population.

Yunnan’s significance as a reservoir of deep human diversity

Most of the skeletons that the researchers sampled were dated between 1,400 and 7,150 years ago and came from Yunnan province, which today has the highest ethnic and linguistic diversity in all of China.

“Ancient humans that lived in this region may be key to addressing several remaining questions on the prehistoric populations of East and Southeast Asia,” the researchers wrote in the study. Those unanswered questions include the origins of people who live on the Tibetan Plateau, as previous studies have shown that Tibetans have northern East Asian ancestry.

Continue Reading

Trending