Connect with us

Published

on

Cat Clifford, CNBC climate tech and innovation reporter, at Helion Energy on October 20.

Photo taken by Jessie Barton, communications for Helion Energy, with Cat Clifford’s camera.

On Thursday, October 20, I took a reporting trip to Everett, Wash., to visit Helion Energy, a fusion startup that has raised raised nearly $600 million from a slew of relatively well known Silicon Valley investors, including Peter Thiel and Sam Altman. It’s got another $1.7 billion in commitments if it hits certain performance targets.

Because nuclear fusion has the potential to make limitless quantities of clean energy without generating any long-lasting nuclear waste, it’s often called the “holy grail” of clean energy. The holy grail remains elusive, however, because recreating fusion on earth in a way that generates more energy that is required to ignite the reaction and can be sustained for an extended period of time has so far remained unattainable. If we could only manage to commercialize fusion here on earth and at scale, all our energy woes would be solved, fusion proponents say. 

Fusion has also been on the horizon for decades, just out of reach, seemingly firmly entrenched in a techno-utopia that exists only in science fiction fantasy novels.

David Kirtley (left), a co-founder and the CEO at Helion, and Chris Pihl, a co-founder and the chief technology officer at Helion.

Photo courtesy Cat Clifford, CNBC.

But visiting Helion Energy’s enormous workspace and lab pulled the idea of fusion out of the completely fantastical and into the potentially real for me. Of course, “potentially real” doesn’t mean that fusion will be a commercially viable energy source powering your home and my computer next year. But it no longer feels like flying a spaceship to Pluto.

As I walked through the massive Helion Energy buildings in Everett, one fully operational and one still under construction, I was struck by how workaday everything looked. Construction equipment, machinery, power cords, workbenches, and countless spaceship-looking component parts are everywhere. Plans are being executed. Wildly foreign-looking machines are being constructed and tested.

The Helion Energy building under construction to house their next generation fusion machine. The smokey atmosphere is visible.

Photo courtesy Cat Clifford, CNBC.

For the employees of Helion Energy, building a fusion device is their job. Going to the office every day means putting part A into Part B and into part C, fiddling with those parts, testing them, and then putting them with more parts, testing those, taking those parts apart maybe when something doesn’t work right, and then putting it back together again until it does. And then moving to Part D and Part E.

The date of my visit is relevant to this story, too, because it added a second layer of strange-becomes-real to my reporting trip. 

On October 20, the Seattle Everett region was blanketed in dangerous levels of wildfire smoke. The air quality index for Everett was 254, making it the worst air quality in the world at that time, according to IQAir.

Helion Energy’s building under construction to house the seventh generation fusion machine on a day when wildfire smoke was not restricting visibility.

Photo courtesy Helion Energy

“Several wildfires burning in the north Cascades were fueled by warm, dry, and windy weather conditions. Easterly winds flared the fires as well as drove the resulting smoke westwards towards Everett and the Seattle region,” Christi Chester Schroeder, the Air Quality Science Manager at IQAir North America, told me.

Global warming is helping to fuel those fires, Denise L. Mauzerall, a professor of environmental engineering and international affairs at Princeton, told me.

“Climate change has contributed to the high temperatures and dry conditions that have prevailed in the Pacific Northwest this year,” Mauzerall said. “These weather conditions, exacerbated by climate change, have increased the likelihood and severity of the fires which are responsible for the extremely poor air quality.”

It was so bad that Helion had told all of its employees to stay home for the first time ever. Management deemed it too dangerous to ask them to leave their houses.

The circumstances of my visit set up an uncomfortable battle. On the one hand, I had a newfound sense of hope about the possibility of fusion energy. At same time, I was wrestling internally with a deep sense of dread about the state of the world.

I wasn’t alone in feeling the weight of the moment. “It is very unusual,” Chris Pihl, a co-founder and the chief technology officer at Helion, said about the smoke.

Pihl has worked on fusion for nearly two decades now. He’s seen it evolve from the realm of physicist academics to a field followed closely by reporters and collecting billions in investments. People working on fusion have become the cool kids, the underdog heroes. As we collectively blow past any realistic hope of staying within the targeted 1.5 degrees of warming and as global energy demand continues to rise, fusion is the home run that sometimes feels like the only solution.

“It’s less of a academic pursuit, an  altruistic pursuit, and it’s turning into more of a survival game at this point I think, with the way things are going,” Pihl told me, as we sat in the empty Helion offices looking out at a wall of gray smoke. “So it’s necessary. And I am glad it is getting attention.”

How Helion’s technology works

CEO and co-founder David Kirtley walked me around the vast lab space where Helion is working on constructing components for its seventh-generation system, Polaris. Each generation has proven out some combination of the physics and engineering that is needed to bring Helion’s specific approach to fusion to fruition. The sixth-generation prototype, Trenta, was completed in 2020 and proved able to reach 100 million degrees Celsius, a key milestone for proving out Helion’s approach.

Polaris is meant to prove, among other things, that it can achieve net electricity — that is, to generate more than it consumes — and it’s already begun designing its eighth generation system, which will be its first commercial grade system. The goal is to demonstrate Helion can make electricity from fusion by 2024 and to have power on the grid by the end of the decade, Kirtley told me.

Cat Clifford, CNBC climate tech and innovation reporter, at Helion Energy on October 20. Polaris, Helion’s seventh prototype, will be housed here.

Photo taken by Jessie Barton, communications for Helion Energy, with Cat Clifford’s camera.

Some of the feasibility of getting fusion energy to the electricity grid in the United States depends on factors Helion can’t control — establishing regulatory processes with the Nuclear Regulatory Commission, and licensing processes to get required grid interconnect approvals, a process which Kirtley has been told can range from a few years to as much as ten years. Because there are so many regulatory hurdles necessary to get fusion hooked into the grid, Kirtley said he expects their first paying customers are likely to be private customers, like technology companies that have power hungry data centers, for example. Working with utility companies will take longer.

One part of the Polaris system that looks perhaps the most otherworldly for a non fusion expert (like me) the Polaris Injector Test, which is how the fuel for the fusion reactor will get into the device.

Arguably the best-known fusion method involves a tokamak, a donut-shaped device that uses super powerful magnets to hold the plasma where the fusion reaction can occur. An international collaborative fusion project, called ITER (“the way” in Latin), is building a massive tokamak in Southern France to prove the viability of fusion.

Helion is not building a tokamak. It is building a long narrow device called a Field Reversed Configuration, or FRC, and the next version will be about 60 feet long.

The fuel is injected in short tiny bursts at both ends of the device and an electric current flowing in a loop confines the plasma. The magnets fire sequentially in pulses, sending the plasmas at both ends shooting towards each other at a velocity greater than one million miles per hour. The plasmas smash into each other in the central fusion chamber where they merge to become a superhot dense plasma that reaches 100 million degrees Celsius. This is where fusion occurs, generating new energy. The magnetic coils that facilitate the plasma compression also recover the energy that is generated. Some of that energy is recycled and used to recharge the capacitors that originally powered the reaction. The additional extra energy is electricity that can be used.  

This is the Polaris Injector Test, where Helion Energy is building a component piece of the seventh generation fusion machine. There will be one of these on each side of the fusion device and this is where the fuel will get into the machine.

Photo courtesy Cat Clifford, CNBC.

Kirtley compares the pulsing of their fusion machine to a piston.

“You compress your fuel, it burns very hot and very intensely, but only for a little bit. And the amount of heat released in that little pulse is more than a large bonfire that’s on all the time,” he told me. “And because it’s a pulse, because it’s just one little high intensity pulse, you can make those engines much more compact, much smaller,” which is important for keeping costs down.

The idea is actually not new. It was theorized in the 1950s and 60s, Kirtley said. But it was not possible to execute until modern transistors and semiconductors were developed. Both Pihl and Kirtley looked at fusion earlier in their careers and weren’t convinced it was economically viable until they came to this FRC design. 

Another moat to cross: This design does use a fuel that is very rare. The fuel for Helion’s approach is deuterium, an isotope of hydrogen that is fairly easy to find, and helium three, which is a very rare type of helium with one extra neutron.

“We used to have to say that you had to go into outer space to get helium three because it was so rare,” Kritley said. To enable their fusion machine to be scaled up, Helion is also developing a way to make helium three with fusion.

A dose of hope

There is no question that Helion has a lot of steps and processes and regulatory hurdles before it can bring unlimited clean energy to the world, as it aims to do. But the way it feels to walk around an enormous wide-open lab facility — with some of the largest ceiling fans I have ever seen — it seems possible in a way that I hadn’t ever felt before. Walking back out into the smoke that day, I was so grateful to have that dose of hope.

But most people were not touring the Helion Energy lab on that day. Most people were sitting stuck inside, or putting themselves at risk outside, unable to see the horizon, unable to see a future where building a fusion machine is a job that is being executed like a mechanic working in a garage. I asked Kirtley about the battling feeling I had of despair at the smoke and hope at the fusion parts being assembled.

“The cognitive dissonance of sometimes what we see out in the world, and what we get to build here is pretty extreme,” Kirtley said.

“Twenty years ago, we were less optimistic about fusion.” But now, his eyes glow as he walks me around the lab. “I get very excited. I get very — you can tell — I get very energized.”

Other young scientists are also excited about fusion too. At the beginning of the week when I visited, Kirtley was at the American Physics Society Department of Plasma Physics conference giving a talk.

“At the end of my talk, I walked out and there were 30 or 40 people that came with me, and in the hallway, we just talked for an hour and a half about the industry,” he said. “The excitement was huge. And a lot of it was with younger engineers and scientists that are either grad students or postdocs, or in the first 10 years of their career, that are really excited about what private industry is doing.”

The race is on to replicate the power of the sun with fusion energy

Continue Reading

Environment

EVs and batteries power China’s $20B clean tech export surge

Published

on

By

EVs and batteries power China’s B clean tech export surge

China set a new record for clean tech exports in August 2025, hitting $20 billion, according to new data analyzed using Ember’s China Cleantech Exports Data Explorer. The country remains the world’s largest exporter of electrotech, with surging demand for EVs and batteries leading the charge.

EV exports jumped 26% from January through August compared to the same period in 2024, while battery exports rose 23%. Other sectors saw more modest growth – grid technology up 22%, wind up 16%, and heating and cooling systems up 4% – but those gains were offset by a 19% drop in solar PV export value. EVs and batteries are now worth more than double the value of China’s solar PV exports.

This milestone is remarkable because it comes even as technology prices have fallen sharply. Solar panel prices, for example, have plunged more than 80% over the past decade, making them more affordable and driving up global demand. In August alone, China exported 46 gigawatts (GW) of solar PV – more than Australia’s entire installed solar capacity – setting a record in capacity terms. However, their dollar value remains 47% below their March 2023 peak.

Falling prices have fueled growth in new regions. Over half of the increase in China’s EV exports this year came from outside the OECD, with the ASEAN region emerging as a major growth engine. EV exports to ASEAN surged 75% in the first eight months of 2025, mainly driven by Indonesia. The country saw the biggest rise in Chinese EV imports globally this year, becoming the world’s ninth-largest EV market. Battery electric vehicles made up 14% of new car sales in Indonesia in August 2025, up from 9% a year earlier.

Advertisement – scroll for more content

Africa is also rapidly adopting Chinese clean tech. From January to August, EV exports to the continent nearly tripled year-over-year (+287%), albeit from a very low base, with Morocco leading growth and Nigeria’s imports soaring sixfold. Latin America and the Caribbean saw an 11% rise, while the Middle East climbed 72%.

Domestically, China’s own adoption of clean tech is accelerating even faster. EVs accounted for 52% of new car sales in August, and in the first half of 2025, China installed more than twice as many solar panels as the rest of the world combined. Ember’s recent China Energy Transition Review attributes this momentum to consistent policy support that’s reshaping the country’s economy and energy system around electrified technologies.

“Demand for clean technologies continues to skyrocket as more and more countries seek their benefits, from low-cost power to cheaper vehicles,” said Ember analyst Euan Graham. “China’s electrotech is becoming the basis of the new energy system, with continued cost reductions driving faster growth than ever, especially in emerging economies.”

Read more: The era of cheap Chinese solar + storage is ending – here’s why


The 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

This Meta alum has spent 10 months leading OpenAI’s nationwide hunt for its Stargate data centers

Published

on

By

This Meta alum has spent 10 months leading OpenAI's nationwide hunt for its Stargate data centers

Keith Heyde stands on site in Abilene, Texas, where OpenAI’s Stargate infrastructure buildout is underway. Heyde, a former head of AI compute at Meta, is now leading OpenAI’s physical expansion push.

OpenAI

It wasn’t how Keith Heyde envisioned celebrating the holidays. Rather than hanging out with his wife back home in Oregon, Heyde spent late December visiting potential data center sites across the U.S.

Two months earlier, Heyde left Meta to join OpenAI as the head of infrastructure. His job was to turn CEO Sam Altman’s ambitious compute dreams into reality, seeking out vast swaths of land suitable for expansive facilities that will eventually be packed with powerful graphics processing units for building large language models.

“My in-between Christmas and New Year’s last year was actually mostly spent looking at sites,” Heyde, 36, told CNBC in an interview. “So my family loved that, trust me.”

His life in 2025 has only gotten more intense.

Since January, OpenAI has been quietly soliciting and reviewing proposals from around 800 applicants hoping to host the next wave of its Stargate data centers, AI supercomputing hubs designed to train increasingly powerful models.

Roughly 20 sites are now in advanced stages of diligence, with massive tracts of land under review across the Southwest, Midwest and Southeast. Heyde said tax incentives are “a relatively small part of the decision matrix.”

The most important factors are access to power, ability to scale, and buy-in from local communities.

“Can we build quickly, is the power ramp there fast, and is this something where it makes sense from a community perspective?” he said.

Heyde leads site development within OpenAI’s industrial compute team, a division that’s swiftly become one of the most important groups inside the company. Infrastructure, once a supporting function, has now been elevated to a strategic pillar on par with product and model development.

With traditional data centers nearly at max capacity, OpenAI is betting that owning the next generation of physical infrastructure is central to controlling the future of AI.

Inside OpenAI's data center site search

The energy needs are hard to fathom. A gigawatt data center requires the amount of power needed for some entire cities. Late last month, OpenAI announced plans for a 17-gigawatt buildout in partnership with OracleNvidia, and SoftBank.

New sites will have to include all sorts of energy options, including battery-backed solar installations, legacy gas turbine refurbishments and even small modular nuclear reactors, Heyde said. Each site looks different, but together they form the industrial backbone OpenAI needs to scale.

“We’ve done this wonderful piece of bottleneck analysis to see what types of energy sources actually allow us to unlock the journey that we want to be on,” Heyde said.

A good chunk of the capital is coming from Nvidia. The chipmaker agreed to invest up to $100 billion to fuel OpenAI’s expansion, which will involve purchasing millions of Nvidia’s GPUs.

‘Perfect wasn’t the goal’

Heyde, a former head of AI compute at Meta, helped oversee the buildout of Meta’s first 100,000 GPU cluster.

In addition to power, OpenAI is assessing how quickly it can build on a site, the availability of labor and proximity to supportive local governments, according to Stargate’s request for proposal.

Heyde said the team has made around 100 site visits and has a short list of sites in late-stage review. Some will be brand new builds, and others will require conversions and refurbishments of existing facilities. Flexibility will be key.

“The perfect parcels are largely taken,” Heyde said. “But we knew that perfect wasn’t the goal — the goal for us was, number one, a compelling power ramp.”

Competition is fierce.

Meta is building what may be the largest data center in the Western Hemisphere — a $10 billion project in Northeast Louisiana, fueled by billions in state incentives. CEO Mark Zuckerberg raised the top end of the company’s annual capital expenditure spending range to $72 billion in July.

The steel frame of data centers under construction during a tour of the OpenAI data center in Abilene, Texas, U.S., Sept. 23, 2025.

Shelby Tauber | Reuters

Amazon and Anthropic are teaming up on a 1,200-acre AI campus in Indiana. And across the country, states are rolling out tax breaks, power guarantees, and expedited zoning approvals to attract the next big AI cluster.

OpenAI is a relative upstart, having been around for just a decade and only known to the mainstream since launching ChatGPT less than three years ago. But it’s raised mounds of cash from the likes of Microsoft and SoftBank, in addition to Nvidia, on its way to a $500 billion valuation.

And OpenAI is showing it’s not afraid to lead the way in AI. A self-built solar campus in Abiliene, Texas, is already live.

While OpenAI still leans on partners like Oracle, OpenAI Chief Financial Officer Sarah Friar told CNBC last week in Abilene that owning first-party infrastructure provides a differentiated approach. It curbs vendor markups, safeguards key intellectual property, and follows the same strategic logic that once drove Amazon to build Amazon Web Services rather than rely on existing infrastructure.

However, Heyde indicated that there’s no real playbook when it comes to AI, particularly as companies pursue artificial general intelligence (AGI), or AI that can potentially meet or exceed human capabilities.

OpenAI's stealth site search drew more than 800 bids since January 2025

“It’s a very different order of magnitude when we think about the type of delivery that has to happen at those locations,” he said.

Some applicants, including former bitcoin mining operators, offered existing power infrastructure, like substations and modular buildouts, but Heyde said those don’t always fit.

“Sometimes we found that it’s almost nice to be the first interaction in a community,” he said. “It’s a very nice narrative that we’re bringing the data center and the infrastructure there on behalf of OpenAI.”

The 20 finalist sites represent phase one of a much larger buildout. OpenAI ultimately plans to scale from single-gigawatt projects to massive campuses.

“Any place or any site we’re moving forward with, we’ve really considered the viability and our own belief that we can deliver the power story and the infrastructure story associated with those sites,” Heyde said.

He understands why many people are skeptical.

“It’s hard. There’s no doubt about it,” Heyde said. “The numbers we’re talking about are very challenging, but it’s certainly possible.”

WATCH: OpenAI’s $850 billion buildout contends with grid limits

OpenAI’s $850 billion buildout contends with grid limits

Continue Reading

Environment

Cadillac’s quiet coup: nearly HALF of all Caddies sold in Q3 were electric

Published

on

By

Cadillac's quiet coup: nearly HALF of all Caddies sold in Q3 were electric

There’s a quiet revolution underway in Cadillac showrooms across America. The brand’s renewed “Standard of the World” ambitions are now matched by sleek, statement-making electric vehicles. And, thanks to a little help from Federal tax credit FOMO, more than 40% of new Cadillacs sold in Q3 were 100% electric.

GM’s overall EV sales numbers were up 110% last quarter, climbing to 66,501 units in the US alone on the back of the affordable, 300+ mile Chevy Equinox and 1,000-mile capable (sort of) Silverado EV – but it was Cadillac dealers that saw the biggest growth in EV sales.

As buyers poured into Cadillac dealerships in the last days of the $7,500 Federal EV tax credit, GM’s luxury arm was ready with stylish, new-for-2025 electric vehicles like the Optiq, Vistiq, and Escalade IQ* waiting for them alongside the Lyriq. The result wasn’t just Cadillac’s best third quarter in more than a decade – Cadillac (and GM) is having one of its best sales year, period.

Here’s what the quarter looked like, by the recently-released GM sales numbers.

Advertisement – scroll for more content


EV MODEL   Q3 25/Q3 24   Q3 25 Q3 24  YTD 25/YTD 24   YTD 25 YTD 24
Chevrolet Equinox EV +156.70% 25,085 9,772 +389.88% 52,834 10,785
Chevrolet Blazer EV +1.14% 8,089 7,998 +36.72% 20,825 15,232
Chevrolet Silverado EV +97.49% 3,940 1,995 +78.58% 9,379 5,252
Chevrolet BrightDrop * 2,384 * * 3,976 0
GMC Hummer EV Pickup +21.86% 5,246 4,305 +48.65% 13,233 8,902
GMC Sierra EV +771.84% 3,374 387 +1,488.37% 6,147 387
Cadillac Optiq * 4,886 * * 9,826 0
Cadillac Lyriq +1.18% 7,309 7,224 -18.17% 16,626 20,318
Cadillac Vistiq * 3,924 * * 5,669 0
Cadillac Escalade IQ * 2,264 * * 6,030 0
Total +109.91% 66,501 31,681 +137.44% 144,545 60,876

Source: GM Authority / GM Q3 2025 sales report.

That asterisk up there next to the high-rolling Escalade IQ that sold more than 3,900 examples is because, at well over $80,000 even for the most basic model it never qualified for the $7,500 Federal EV tax credit to begin with (nor did the people destined to buy it, who almost certainly make too much to qualify).

It’ll be interesting to see if the loss of that tax credit will do much to negatively impact EV sales in Q4. And that’ll get doubly interesting thanks to the creative accounting team at GM that figured out how to extend that $7,500 tax credit for existing dealer inventory (for a few more months) and that its biggest EV rivals at Hyundai are slashing prices on popular IONIQ models.

You can check out our EIC Fred Lambert’s full review of the new electric Cadillac Escalade in the video, below, and use the following links to find great Cadillac deals near you while that cleverly extended tax credit is still a thing.

Cadillac Escalade IQ review


SOURCE | IMAGES: GM, via GM Authority.


If you drive an electric vehicle, make charging at home fast, safe, and convenient with a Level 2 charger installed by Qmerit. As the nation’s most trusted EV charger installation network, Qmerit connects you with licensed, background-checked electricians who specialize in EV charging. You’ll get a quick online estimate, upfront pricing, and installation backed by Qmerit’s nationwide quality guarantee. Their pros follow the highest safety standards so you can plug in at home with total peace of mind.

Ready to charge smarter? Get started today with Qmerit.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending