Connect with us

Published

on

The last total lunar eclipse of the year is set to take place on Tuesday, when the Earth blocks the Sun’s rays from reaching the Moon. Also known as the Blood Moon, the lunar eclipse will take place almost a year after the last total lunar eclipse, and viewers in North America, Central America, most of South America, the Pacific Ocean, Australia, New Zealand, and Asia will see the Moon darken and acquire a reddish hue on Tuesday. This will be the last total lunar eclipse until March 14, 2025.

How to watch the lunar eclipse

The Moon will traverse the northern half of Earth’s shadow, with totality predicted to last 86 minutes. Mid-eclipse happens on November 8th at 10:59 Universal Time (UT) or 4:29pm IST, around six days before apogee, when the Moon is farthest from Earth in its orbit. The actual clock times of the eclipse depend on your time zone.

You don’t need any equipment to observe a Blood Moon, but binoculars or a telescope can help enhance the view and the red colour of Earth’s only natural satellite.

You can also watch the lunar eclipse from the video embedded below

What to expect from the lunar eclipse

As a result, during the eclipse, the Moon will appear 7 percent smaller than it does when it’s at perigee (closest to Earth), but the difference is imperceptible. The eclipse on Tuesday will be a bit brighter than the one that occurred in May — especially in the Moon’s northern half — since the Moon doesn’t glide as close to the dark center of Earth’s shadow.

There are several delightful extras viewers can look out for while admiring the eclipse. During totality, Earth’s shadow dims the Moon sufficiently for stars to be visible right up to its edge. In addition, Uranus reaches opposition just a day after the eclipse, when it’s directly opposite the Earth from the Sun and at its closest and brightest.

And on eclipse night the distant planet will be upper left of the red-hued Moon — binoculars will reveal the planet’s pale disk. The farther west you are, the smaller the gap between planet and Moon. Also, the Northern and Southern Taurid meteor showers peak around this time, so eclipse-watchers might be treated to a few meteors streaking across the night sky.

All stages of the eclipse occur simultaneously for everyone, but not everyone will see the full eclipse. Weather permitting, observers in western North America will witness the entirety of the event on the morning of November 8, with the partial eclipse phase beginning an hour or so after midnight. In Hawai’i, the eclipsed Moon will be directly overhead. Viewers in the central parts of the continent will see all of totality and most of the final partial phases, while those on the East Coast can watch the Sun rise as totality ends.

South America will witness the initial phases of the eclipse up to totality, while Central America can enjoy the show a bit longer and see it through the total phase. The eclipse is an early evening event in central and eastern Asia, Australia, and New Zealand, and the Moon rises either during the earlier partial phases or during totality.

What to observe during the lunar eclipse.

The Moon’s leading edge enters the pale outer fringe of Earth’s shadow: the penumbra. You are unlikely to notice anything until the Moon is about halfway across the penumbra.

  1. Watch for a slight darkening on the Moon’s left side as seen from North America. The penumbral shading becomes stronger as the Moon moves deeper in.
  2. The penumbra is the region where an astronaut standing on the Moon would see Earth covering only part of the Sun’s disc.
  3. The Moon’s leading edge enters the umbra, the cone of Earth’s shadow within which the Sun’s completely hidden. You should notice a dramatic darkening on the leading edge of the lunar disk. With a telescope, you can watch the edge of the umbra slowly engulfing one lunar feature after another, as the entire sky begins to grow darker.
  4. The trailing edge of the Moon slips into the umbra for the beginning of total eclipse. But the Moon won’t black out completely: It’s sure to glow some shade of intense orange or red.
  5. Why is this? The Earth’s atmosphere scatters and bends (refracts) sunlight that skims its edges, diverting some of it onto the eclipsed Moon. If you were on the Moon during a lunar eclipse, you’d see the Sun hidden by a dark Earth rimmed with the reddish light of all the sunrises and sunsets ringing the world at that moment.
  6. The red umbral glow can be quite different from one eclipse to the next. Two main factors affect its brightness and hue. The first is simply how deeply the Moon goes into the umbra as it passes through; the center of the umbra is darker than its edges. The other factor is the state of Earth’s atmosphere. If a major volcanic eruption has recently polluted the stratosphere with thin global haze, a lunar eclipse can be dark red, ashen brown, or occasionally almost black.
  7. In addition, blue light is refracted through Earth’s clear, ozone-rich upper atmosphere above the thicker layers that produce the red sunrise-sunset colors. This ozone-blue light tints the Moon also, especially near the umbra’s edge. You’ll need binoculars or a telescope to see this effect.
  8. As the Moon progresses along its orbit, events replay in reverse order. The Moon’s edge re-emerges into the sunlight, ending totality and beginning a partial eclipse again.
  9. When all of the Moon escapes the umbra, only the last, penumbral shading is left. Sometime later, nothing unusual remains.

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

A Planet with a Death Wish: How HIP 67522 b Is Forcing Its Star to Explode

Published

on

By

A Planet with a Death Wish: How HIP 67522 b Is Forcing Its Star to Explode

Scientists have caught a planet with a death wish, which is an alien world, orbiting very near to its star, and so speedy that it is causing the star to go to its death with bursting explosions. HIP 67522 b is the planet, and it is of the same size as Jupiter with a seven-day orbit around its host star. These orbits are disturbing the magnetic field of the star and causing enormous blasting eruptions to blow back the planet and make it wrinkled. This is the first time that a planet is influencing the host star, as the astronomers reported in a study published on July 2, 2025, in the Journal Nature.

A Planet with a Death Wish: HIP 67522 b’s Fiery Orbit

As per the study by NASA, Ekaterina Ilin, the first author of the study and an astrophysicist at the Netherlands Institute for Radio Astronomy, said that the planet was observed to trigger the energetic flares. It has been predicted by the scientists that the waves are setting off explosions that are going to happen.

Magnetic Chaos: Planet Triggering Star’s Explosions

Stars are burning plasma, gigantic balls with charged particles or ions that move on their surface to form strong magnetic fields. Since the magnetic fields cannot cross each other, sometimes these field knots suddenly snap to launch flares of radiation known as solar flares, which are often accompanied by coronal mass ejections, also known as surface plasma.

As many planets have a magnetic field, scientists have long wondered whether the planets, having close orbits near their stars, might disturb these strong magnetic fields and trigger the explosions. For years, scientists have observed whether the planets can influence the magnetic behaviour of their host stars, especially the ones that are close to their orbits.

A New Era of Star-Planet Relationship Studies

A planet with a strong magnetic field orbits around a star which has a delicate magnetic field, then it might be bombarded with solar radiation. These interactions helps int he study of star and planet bond and further the evolution of atmospher and magnetic field.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Pebble Halo Smart Ring Launched in India With In-Built Digital Display: Price, Features



Dolby Cinema Debuts in Pune Featuring Dolby Vision With 4K Laser Projection, Dolby Atmos

Continue Reading

Science

Webb Telescope Spots Possible Jellyfish Galaxy 12 Billion Light-Years Away

Published

on

By

Webb Telescope Spots Possible Jellyfish Galaxy 12 Billion Light-Years Away

Astronomers have discovered a new “jellyfish” galaxy about 12 billion light-years away using the James Webb Space Telescope. It appears to have tentacle-like streams of gas and stars trailing off one side, a signature feature of jellyfish galaxies. These galaxies develop such trails via ram pressure stripping as they move through dense cluster environments, triggering star formation in the stripped gas. The find was made by Ian Roberts of Waterloo University, and details are described in a preprint on arXiv. More analysis is needed to confirm the classification, but early signs strongly suggest this object is indeed a jellyfish galaxy.

What Are Jellyfish Galaxies?

According to NASA, jellyfish galaxies are so named because of the long, trailing streams of gas and young stars that extend from one side of the galaxy. This phenomenon occurs when a galaxy moves rapidly through the hot, dense gas in a cluster, and ram pressure strips material away. The stripped gas forms a wake behind the galaxy, and this wake often lights up with bursts of new star formation. At the same time, the process can deprive the galaxy’s core of gas, potentially slowing star formation in the galaxy’s center.

Because the jellyfish stage is short-lived on cosmic timescales, astronomers rarely catch galaxies in this act. Studying jellyfish galaxies gives scientists insight into how dense environments affect galaxy evolution and star formation.

Discovery and Future Research

The researchers caution that the galaxy’s apparent “tentacles” may partly be an artifact of the imaging method. If confirmed, this object (COSMOS2020-635829) would be the most distant known jellyfish galaxy, offering a rare glimpse of how ram pressure stripping and cluster-driven quenching operated in the early cosmos. As the study authors note, finding a jellyfish at z>1 reinforces the idea that these environmental effects were already at work near the peak of cosmic star formation.

Continue Reading

Science

Mars Dust Devils May Spark Lightning, Might Pose Risks to Rovers: Study

Published

on

By

Mars Dust Devils May Spark Lightning, Might Pose Risks to Rovers: Study

Dust devils on Mars – swirling columns of dust and air that often scour the Red Planet’s surface – may be crackling with electricity, a new computer-modeling study suggests. Researchers led by Varun Sheel simulated how Mars’s dry atmosphere and frictional dust collisions charge up grains inside a vortex. They found these fields could grow so strong that brief lightning-like discharges might occur. This electrification is a concern for surface missions, since charged dust could cling to rover wheels, solar panels and antennas, blocking sunlight and interfering with communications.

Formation and Features of Martian Dust Devils

According to the study, dust devils form when the Sun heats Mars’s surface, causing warm air to rise and spin into vortices. Colder air rushes inward along the ground, stretching the rising column upward and whipping dust high into the sky. Because Mars has lower gravity and a thinner atmosphere than Earth, its dust devils can tower much higher, three times larger than storms on Earth. NASA’s Viking mission first detected Martian dust devils; later rovers like Curiosity and Perseverance have filmed them sweeping across the dusty plains. These whirlwinds clean off solar panels – as happened with Spirit in 2005 – but more often they stir up fine dust that can coat instruments.

Electrification and Risks to Rovers

Dust grains in Martian whirlwinds can pick up charge through collisions (a triboelectric effect). Sheel’s models predict that this charge separation can create strong electric fields inside a dust devil. These fields could even exceed Mars’s atmospheric breakdown threshold (around 25 kV/m), enough to spark lightning in the vortex. NASA’s Perseverance rover recorded what appears to be a small triboelectric discharge when a dust devil passed overhead.

Even without lightning, any static buildup is problematic. As planetary scientist Yoav Yair notes, “Electrified dust will adhere to conducting surfaces such as wheels, solar panels and antennas,” potentially reducing sunlight reaching panels and jamming communications. Rovers may need new design features or procedures to handle this unusual Martian weather.

Continue Reading

Trending