Connect with us

Published

on

NASA launched the most powerful rocket ever built on a journey to the Moon on Wednesday, in a spectacular blaze of light and sound that marked the start of the space agency’s new flagship program, Artemis. The 32-story tall Space Launch System (SLS) blasted off from the storied Kennedy Space Center in Florida at 01:47 am (12:17pm IST).

“We are going,” tweeted the space agency.

Fixed to its top was the uncrewed Orion spaceship that will later separate and complete an orbit-and-a-half of Earth’s nearest neighbor, in a test run for later flights that should see the first woman and first person of color touch down on lunar soil by the mid-2020s.

America last sent astronauts to the Moon during the Apollo era, from 1969-1972. This time it hopes to build a sustained presence — including a lunar space station — to help prepare for an eventual mission to Mars.

The launch came despite technical issues that ate into the two-hour launch window that opened at 1:04 am (11:34am IST).

Engineers were forced to pause the flow of liquid hydrogen into the core stage Tuesday night because of a valve leak, though a team sent to the launch pad resolved the problem after an hour.

Later, the space agency reported that a radar site monitoring the rocket’s flight path was experiencing problems due to a faulty ethernet switch that had to be replaced.

It was third time lucky for NASA after two previous launch attempts were canceled for technical reasons. Launch was also delayed due to weather setbacks, including Hurricane Ian that battered Florida in late September.

‘Extremely excited’

About 100,000 people were expected on the coast to watch the launch, with the rocket promising to light up the night sky.

Andrew Trombley, a space enthusiast from St. Louis, Missouri, was anxiously hoping for a successful liftoff after several futile trips made for the launch.

“I’ve been down here a couple of times already to watch this thing go up and have it canceled, so, this is like, whatever, the third trip down here for this, so I’m excited to see it go,” said the network engineer.

“I was too little for the Apollo missions, so … I wanted to be here in person.”

Kerry Warner, 59, a grandmother and semi-retired educator who lives in Florida, was fired up for liftoff, which she said was “part of America and what America is all about.”

“Third time’s the charm. We’re hoping for it.”

Far side of Moon

The Orion crew capsule was being lifted by two boosters and four powerful engines under the core stage, which detached after only a few minutes.

After a final push from the upper stage, the capsule will be well on its way, taking several days to reach its destination.

Rather than landing on the Moon, it will assume a distant orbit, venturing 40,000 miles (64,000 kilometers) beyond the far side — further than any other habitable spacecraft so far.

Finally, Orion will embark on the return leg of its journey. When passing through the atmosphere, the capsule’s heat shield will need to withstand a temperature half as hot as the Sun’s surface.

The mission will last 25 and a half days, with a splashdown in the Pacific Ocean on December 11.

NASA is banking on a successful mission after developing the SLS rocket for more than a decade. It will have invested more than $90 billion in its new lunar program by the end of 2025, according to a public audit.

Artemis 2 will involve a flyby of the Moon with astronauts in 2024, while Artemis 3 will see boots on lunar soil, no sooner than 2025.

NASA has named its Moon mission after the Greek goddess of the hunt, and the program aims to send humans back to the Moon by 2025. The last time astronauts walked the surface of the Moon was in 1972, as part of NASA’s Apollo mission. The Artemis mission eventually plans to set up a base for astronauts on the Moon, ahead of long-term plans to send humans to Mars. 


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Earth’s Oldest Impact Crater Turns Out to Be Much Younger Claims New Study

Published

on

By

Earth’s Oldest Impact Crater Turns Out to Be Much Younger Claims New Study

A location in Western Australia that used to be named as the oldest meteorite impact crater on Earth is now actually a lot younger than that, scientists announced today in Science Advances. The structure — previously dated to 3.5 billion years ago and located within Western Australia’s North Pole Dome region of the Pilbara — was believed to be older than any of Earth’s known impact craters. Today, new research published in the journal Geochemistry found that what we now call the Miralga impact structure is, in fact, much younger, at 2.7 billion years old, and considerably smaller in diameter. This recasts earlier ideas on the early Earth’s geological activity and questions previous theories regarding impact-driven crust formation or perhaps even early life.

Miralga Crater Loses Oldest Impact Title but Gains New Scientific Relevance

As per The Conversation article republished by Space.com, the teams that explored the crater could only point to one thing that was likely — it had been formed by an impact. However, they ultimately disagreed as to whether this event had been and how large it was. Younger rocks contain shatter cones, indicating Earth’s early continental geology shielded the impact to a specific 2.7 billion-400 million-year period despite earlier assertions.

They made the determination to honour the cultural revision of one site from 100 km across to a more manageable 16 km wide crater named Miralga. It’s the site – still affected by seawater – of events too recent to influence the Earth’s crust.

The Miralga basalt feature (unique to basalt) is a rare site for an instrument to practice on before heading to Mars, while advancing our understanding of impacts and early life prospects.

Isotopic dating to clarify the crucial part played by this, the oldest crater on Earth and unique in a geological sense, in planetary science and early Earth history is presently ongoing at Miralga.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Chakravyuham Now Streaming on Aha Tamil: Everything You Need to Know

Continue Reading

Science

NASA’s TRACERS Satellites Begin Solar Wind Study Despite SV1 Glitch

Published

on

By

NASA's TRACERS Satellites Begin Solar Wind Study Despite SV1 Glitch

NASA’s TRACERS mission twin satellites were launched on July 23, 2025, to study how solar activity causes magnetic reconnection in Earth’s atmosphere. After launch, a power subsystem anomaly had affected one of the satellites (Space Vehicle 1, SV1) on July 25, causing periodic communication loss. NASA said satellite 2 (Space Vehicle 2, SV2) is “healthy,” and transition is beginning to the instrument commissioning phase. The idea behind TRACERS was to develop a complete toolkit that would allow us, for the first time, to observe all of these complex solar wind connection processes at once. NASA engineers are actively working to recover SV1. Single vector views (SV2) spacecraft are completing a healthy checkout and readying themselves for their science mission.

Recovery Efforts for SV1 Satellite

According to NASA, controllers detected a problem with SV1’s power subsystem in late July that led to intermittent contacts and a loss of communication. Data suggest SV1 can only remain active when its solar panels receive sufficient sunlight. Because of the spacecraft’s current orientation, engineers plan to wait until later in August — when SV1’s panels will receive more sun — to reestablish contact and continue recovery steps.

Meanwhile, mission teams are reviewing onboard data to diagnose the issue and plan next steps. Any time contact is regained, the team will assess SV1’s status and check for impacts on the mission’s science goals. For now, no significant updates on SV1 are expected for several weeks.

SV2 Operational Status

The mission’s other satellite, SV2, is in good health and fully operational. Mission teams have been testing SV2’s onboard instruments and systems through a standard commissioning process. This checkout is proceeding as expected, with NASA anticipating that commissioning will finish by the end of August.

Once SV2 is fully checked out, it will begin coordinated science operations with its twin to study magnetic reconnection – the process that shapes how solar activity affects Earth’s magnetic environment. For now, SV2 continues its planned tests and will soon be ready to collect valuable science data as part of the TRACERS mission.

Continue Reading

Science

Scientists Explore Role of Space Radiation in Powering Alien Microbial Life

Published

on

By

Scientists Explore Role of Space Radiation in Powering Alien Microbial Life

The search for alien life traditionally focuses on planets in the “Goldilocks zone” — the orbital band where surface water can exist. But new research suggests life might thrive far from starlight in a so-called “radiolytic habitable zone,” where penetrating cosmic rays break buried water molecules (a process called radiolysis) into hydrogen, oxygen and energy-rich electrons. Simulations of icy worlds like Mars, Europa and Saturn’s moon Enceladus show cosmic rays can reach subsurface water. Researchers suggest these electrons could fuel microbes in hidden reservoirs, effectively creating underground oases of life.

Radiation as a Power Source

According to the new study, cosmic rays are fast-moving particles (electrons, protons or nuclei) blasted out by supernovas and distant stars. On Earth, most are stopped by our magnetic field and thick atmosphere. But Mars and the icy moons (which lack such shields) get hit directly; their thin air or vacuum allows rays to penetrate deep into ice and rock. When these particles strike water or ice, they trigger radiolysis – shattering molecules and freeing hydrogen, oxygen and electrons. Some Earth microbes already exploit this: for example, a bacterium 2.8 km underground in a gold mine lives entirely on hydrogen produced by radioactive decay.

Expanding the Search for Life

Dubbed the “Radiolytic Habitable Zone,” this hidden-energy band lies beneath ice or rock where cosmic rays can sustain life. Simulations show Saturn’s icy moon Enceladus has the highest radiolytic potential, followed by Mars and then Jupiter’s moon Europa. NASA’s upcoming Europa Clipper mission and telescopes like ALMA will probe these frozen worlds for chemical signs of life. Even more intriguingly, cosmic-ray impacts can directly create complex organic molecules (for example, amino-acid precursors) in ice. Because cosmic rays pervade the galaxy, even a rogue planet adrift in space would be bathed in intense radiation.

As Dimitra Atri, an astrophysicist and co-author of the new study puts it, “life might be able to survive in more places than we ever imagined”, suggesting hidden biospheres could exist in many cold, dark niches.

Continue Reading

Trending