Connect with us

Published

on

Apple is said to be working on a refreshed 15-inch MacBook Air, and details of the purported laptop have been previously surfaced online. The Cupertino-based tech major is yet to confirm the development of a new MacBook device, but DSCC analyst Ross Young suggests that the production of panels designed for the ‌upcoming MacBook Air model will start in the first quarter of 2023 with the possibility of a spring release date. The purported machine will sport a 15.5-inch display and is expected to debut as the largest ‌MacBook Air‌ to date.

As per a report by 9to5Mac quoting Display Supply Chain Consultants (DSCC) analyst Ross Young, Apple is planning a new 15-inch MacBook Air model. The panel production for the laptop will start in the first quarter of next year, according to the analyst. The report further adds that it could go official sometime in spring 2023. The larger MacBook Air is said to feature a 15.5-inch display. The display of the laptop was previously rumoured to measure 15.2 inches.

Back in June, TF Securities analyst Ming-Chi Kuo said that the 15-inch MacBook will come in two CPU options — an M2 chipset with a 35W adapter and an M2 Pro chipset with a 67W adapter. According to Kuo, it will go into mass production next year and will be unveiled in the second quarter of 2023. The upcoming laptop will not bear the MacBook Air moniker, according to Kuo.

Bloomberg’s Mark Gurman also earlier suggested that Apple is working on a larger MacBook Air with a 15-inch screen for release as early as next spring alongside a larger 10-inch iPad. The model under development is speculated to be an updated version of the 13.6-inch MacBook Air.

Apple announced the 13.6-inch MacBook Air at WWDC 2022 in June. It is powered by the company’s M2 chip and offers up to 24GB of unified memory and up to 2TB of storage.

Price of the 13-inch MacBook Pro (2022) starts at Rs. 1,29,900 in India for regular customers. It has an initial price tag of Rs. 1,19,900 for educational uses. It is offered in Silver and Space Grey colour options.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Greenland’s Melting Glaciers Feed Ocean Life, Study Finds

Published

on

By

Greenland's Melting Glaciers Feed Ocean Life, Study Finds

The process of Greenland’s ice sheet melting is not only raising sea levels, it is also feeding life in the ocean. As the most productive for marine life, phytoplankton harvesting energy from this nutrient-filled climate change is altering how this biological pump works in these warming ares. In a new study, scientists employed cutting-edge computer models to simulate the intricate movements of ice melt and seawater with ocean currents and marine biology behaviour finnesing adding more detail to an understanding of these unseen forces between Earth’s shifting polar zones.

Glacial Melt Fuels a Surge in Ocean Life

According to precious study, each summer Jakobshavn Glacier releases more than 300,000 gallons of freshwater per second into the sea. This less-dense meltwater shoots upward through heavier, salty seawater, dragging deep-sea nutrients—like iron and nitrate—toward the sunlit surface. These nutrients are essential for phytoplankton, which are the foundation of the ocean food chain.

In recent decades, NASA satellite data recorded a 57% surge in Arctic phytoplankton, and scientists now have a clearer picture of why. The nutrient boost is especially crucial in late summer, when spring blooms have already depleted surface waters. Without direct access to such remote regions, researchers had long struggled to test the nutrient-plume hypothesis—until now.

NASA’s Digital Ocean Brings Clarity Beneath the Ice

To simulate the chaotic waters of Greenland’s fjords, researchers used the ECCO-Darwin model, developed by NASA’s Jet Propulsion Laboratory and MIT. Fueled by billions of ocean measurements—temperature, salinity, pressure—this model replicates how biology, chemistry, and physics interact. Using NASA’s supercomputers at Ames Research Center, the team calculated a 15–40% increase in phytoplankton growth from glacial nutrients.

Yet more change looms: as melting accelerates, seawater may lose its ability to absorb CO₂ even as plankton pull more of it in. “Like a Swiss Army knife,” said researcher Michael Wood, “this model helps us explore ecosystems far beyond Greenland.”

Continue Reading

Science

NASA Aims to Deploy Nuclear Reactor on Moon by 2030 for Strategic Power

Published

on

By

NASA Aims to Deploy Nuclear Reactor on Moon by 2030 for Strategic Power

NASA’s interim leader Sean Duffy recently declared the U.S. space agency aims to place a 100-kilowatt nuclear reactor on the Moon by 2030 to provide energy for an eventual lunar outpost. Duffy describes this as a new moon race to establish the strategic foothold and keep a competitive advantage for the U.S. During a press conference titled “Unleashing American Drone Dominance” , he emphasised the importance of having dependable power on the lunar surface. NASA moved up its new crew-rushed lunar lander by a full year as the agency scrambles to seize key resources on the moon and lay the groundwork for deeper exploration at least four years away.

According to the press conference, for exploration and a long-term Moon base, reliable power is crucial. Solar panels fail during the Moon’s two-week-long nights, so a nuclear reactor could supply continuous electricity even in darkness. It would be especially valuable at the south pole, where permanent shadows hide water-ice deposits. These ice reserves are essential for life support and fuel, so steady power there would expand mission capabilities. Strategically, deploying a reactor would help secure key territory.

China and Russia plan to build one by the mid-2030s, and U.S. officials warn the first country to do so could effectively claim that region, creating a de facto “keep-out zone”. Duffy even called the south pole the Moon’s “best” spot—rich in ice and sunlight—and said America must “get there first and claim that for America”.

Challenges

The directive sets near-term milestones. NASA must appoint a lunar reactor program manager within 30 days and solicit industry proposals within 60 days. The aim is a flight-ready 100 kW reactor by roughly 2030.

However, the plan faces major hurdles. The 2026 budget would allocate about $350 million to jump-start lunar fission power (rising to $500 M by 2027), but also proposes deep cuts to overall NASA funding. Observers note this would be NASA’s smallest budget in decades. Meanwhile, the agency is trimming science programs and even its workforce.

Continue Reading

Science

NASA Awards Firefly $177M for 2029 Mission to Deliver Rovers to Moon’s South Pole

Published

on

By

NASA Awards Firefly 7M for 2029 Mission to Deliver Rovers to Moon’s South Pole

NASA’s $176.7 million for Firefly is funding a contract to deliver two rovers and three science instruments to the south pole of the moon in 2029. It will be the first of multiple rovers to roll in on a single flight under NASA’s Commercial Lunar Payload Services (CLPS) initiative. The cargo variant of Blue Origin’s lander is in development to prospect the moon’s surface for resources, like water ice, that can be used to support future crewed missions. It is Firefly’s fifth CLPS task order and fourth manifested lunar landing, further supporting NASA’s overarching Artemis programme to return humans sustainably to the Moon.

Firefly’s Multi-Year Moon Mission to Deliver Rovers, Study Water Ice at Lunar South Pole

According to a NASA statement, Firefly is slated to launch between July 2025 and March 2030, delivering the payload to complete a full surface delivery mission. The payload features mobile rovers and science instruments from collaborators such as the Canadian Space Agency and the University of Bern that will examine surface chemistry, radiation measurements, and hydrogen-rich volatiles.

The new US vision — the Artemis programme — pays attention to the moon’s southern pole, where water is stored in ice. Firefly makes two successful lunar deliveries in 2025 and 2028 with the help of CLPS, driving costs lower and flight rates higher.

Firefly Mission to Map Lunar Hazards and Pave the Way for Future Human Exploration

The mission package, which includes imaging, autonomous mobility, and regolith analysis, aims to map hazards, locate safe zones, and prepare for future human missions, including Mars-targeting.

As noted by Johnson Space Centre’s CLPS manager Adam Schlesinger, lunar deliveries like this one “will provide a better understanding of the exploration environment”, bringing NASA closer to achieving a sustainable lunar presence.

Continue Reading

Trending