Connect with us

Published

on

Indian Space Research Organisation (ISRO) will turn its focus on science experiments in 2023 with dedicated missions to the Sun — Aditya — and the moon — Chandrayaan-3 — even as the nascent start-up sector is set to soar in the space applications segment. The upcoming year will also witness a series of experiments on India’s maiden human space flight — the Gaganyaan project — with the first uncrewed mission expected in the last quarter of 2023 aimed at validating the performance of the human-rated launch vehicle, orbital module propulsion system and recovery operations.

ISRO further plans to conduct the first runway landing experiment (RLV-LEX) of the reusable launch vehicle early next year from Aeronautical Test Range in Karnataka’s Chitradurga, Union Minister of State in Prime Minister’s Office Jitendra Singh told Parliament this month.

Indian start-ups that marked their arrival with the sub-orbital flight by Skyroot Aerospace’s Vikram-S rocket, the first by a private sector company and the launch of Pixxel’s hyperspectral satellites Shakuntala, on SpaceX’s Falcon-9 rocket in April and Anand onboard ISRO’s PSLV in November.

Skyroot Aerospace, which launched India’s first privately developed rocket in November, plans to put a client satellite in orbit sometime next year, while Agnikul Cosmos, a start-up incubated on the IIT-Madras campus, has also lined up the test flight of its highly customisable Agnibaan rocket.

“We are developing six commercial hyperspectral imagery satellites which will be ready for launch next year,” Awais Ahmed, Pixxel co-founder and CEO, had told PTI.

Ahmed said many more rocket companies around the globe will see their first orbital launches come to fruition which will lead to a rocket-themed game of thrones as they vie for the same set of customers sending satellites into space.

The start-ups are eyeing the huge space applications market in the country, which was earlier the sole domain of ISRO, carving a niche for themselves in the earth imaging sector, developing rockets to launch small satellites, designing cheaper fuels for satellites and even planning to take tourists on a space journey.

“The potential for innovative space applications is immense, especially if established aerospace companies form partnerships with businesses that traditionally haven’t ventured into orbit, e.g. pharmaceutical, agriculture companies,” Chaitanya Dora Surapureddy, Chief Financial Officer, DhruvaSpace, told PTI.

DhruvaSpace had launched two satellites Thybolt 1 & 2 onboard ISRO’s PSLV C-54 mission that demonstrated the ability to conduct amateur satellite communication which will help ham radio operations.

Surapureddy said DhurvaSpace has already bagged its first commercial contract worth Rs 20 crore to build satellites.

“The number of space startups in India has already crossed 100 and these startups have raised funding of more than $245.35 million (roughly Rs. 2,000 crore),” Lt Gen A K Bhatt (retd.), Director General, Indian Space Association (ISpA) told PTI.

Agnikul also inaugurated its first launchpad and mission control centre at ISRO’s Satish Dhawan Space Centre at Sriharikota.

In 2022, the industry witnessed some major milestones with NewSpace India Limited (NSIL) authorising the space conglomerate formed by Larsen & Toubro (L&T) and Hindustan Aeronautics Limited a Rs. 860-crore contract for the commercial development of the next five Polar Satellite Launch Vehicles (PSLVs).

OneWeb also signed up the services of ISRO’s launch vehicle to put 36 satellites in low earth orbit from Sriharikota. A follow-up launch of another 36 satellites is expected next year.

The OneWeb contract for ISRO is learnt to be an outcome of some aggressive bidding by the Indians after the Ukraine conflict knocked off the Russian space launch capabilities off the market.

Chaitanya Giri, space consultant with Research and Information System for Developing Countries likens the aggression in the Indian space sector to the one displayed by Sourav Ganguly’s cricket team.

“Our earlier approach was like Mohammad Azharuddin-led cricket team – very mellow and gentlemanly. The newfound aggression is because of India’s rising geopolitical stature. Also, the Russian market has become a no go due to the Ukraine conflict. So is the Chinese market. Now, it is Advantage India,” Giri told PTI.

He said Indian start-ups should also vie for international contracts and not look at ISRO for business.

“ISRO is not an entity that will sustain business for them. Indian space start-ups, MSMEs and big corporates will have to strike business arrangements amongst each other. These B-2-B arrangements need to grow,” Giri said.


Affiliate links may be automatically generated – see our ethics statement for details.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2023 hub.

Continue Reading

Science

NASA Deploys High-Tech Aircraft to Support Texas Flood Relief and Recovery Efforts

Published

on

By

NASA Deploys High-Tech Aircraft to Support Texas Flood Relief and Recovery Efforts

NASA deployed two aircrafts to help state and local authorities in the continuing recovery operations, in response to the flood near Kerrville, Texas. The aircrafts are from NASA’s Disasters Response Coordination System, and is activated to support the emergency response for flood and is closely working with the Texas Division of Emergency Management, the humanitarian groups Save the Children and GiveDirectly, and the Federal Emergency Management Agency. Persistent cloud-cover over there has made it quite difficult to capture the clear satellite images.

NASA Deploys Aircraft with Advanced Sensors for Texas Flood Response

As reported by NASA, if this can be done, the NASA’s Airborne Science Program can concur a series of flights to fetch observations of te impacted areas. NASA is sharing this data with emergency response teams to inform the search and rescue efforts and help in resource allocation and decision making. WB-57 aircraft departed from Ellington Field on July 8, 2025 for conducting aerial surveys. The aircraft is loaded with the DyNAMITE which is known as Day/Night Airborne Motion Imager for Terrestrial Environments sensor.

Real-Time Data and Imagery Aid Emergency Teams and Flood Recovery Efforts

The DyNAMITE views the Guadalupe River and many miles of the surrounding area, and provides high-resolution imagery which is important to evaluate the damage and support coordination of the foundation-based recovery efforts. This system enables the real-time data collection and analysis, which enhances the situational awareness and enhancing emergency response times.

Further, the agency’s Uninhabited Aerial Vehicle Syntehtic Aperture Radar (UAVSAR) aboard the Gulfstream III. UAVSAR is managed by Jet Propulsion Laboratory in Southern California and is planning to collect the observations over the Guadalupe, San Gabriel, and Colorado river basins on three weekdays, Wednesday, Thursday, and Friday. It can penetrate the vegetation to see water that sensors are unable to detect. The goal of the team is to characterise the flood extent of flood and help the understanding of the damage amount within communities.

Further, the Disasters are being coordinated with FEMA, the local responders and the Texas Division of Emergency Management for ensuring the data is quickly delivered to the decision making people on the ground. The data is being shared on the NASA Disasters Mapping Portal as soon as it is available.

Continue Reading

Science

Massive Boulders Ejected by DART Mission Could Complicate Future Asteroid Deflection

Published

on

By

Massive Boulders Ejected by DART Mission Could Complicate Future Asteroid Deflection

When NASA’s DART spacecraft smashed into the asteroid moon Dimorphos in 2022, it was more than proof that a kinetic impactor can nudge the orbit of an asteroid. The impact created about 100 large boulders, some of which had greater than three times the spacecraft’s momentum. These high-speed ejecta added unanticipated forces that may complicate future planetary defence efforts. Using data from Italy’s LICIACube—an observer satellite deployed during the mission—a University of Maryland-led team tracked the rocks’ locations and velocities, revealing a complex and potentially disruptive impact legacy.

DART’s Boulder Ejecta Could Disrupt Asteroid Deflection, New Study Warns of Hidden Forces

As per a study in Planetary Science Journal published on July 4, 2025, the team discovered that the boulders weren’t scattered randomly but instead clustered into two clear groups, indicating unknown mechanisms at work. Lead author Tony Farnham noted that this added momentum, largely perpendicular to the spacecraft’s trajectory, might have tilted Dimorphos’ orbit and introduced unpredictable rotation. The largest cluster, travelling southward at shallow angles, likely originated from two larger surface boulders struck moments before the main impact.

Second author Jessica Sunshine explained that DART’s solar panels may have shattered these large boulders, Atabaque and Bodhran, creating chaotic debris patterns. In contrast to NASA’s earlier Deep Impact mission—which hit a dustier target and produced smoother ejecta—DART’s rocky terrain resulted in filamentary structures. The results emphasise how varied the surfaces of asteroids can be and how that variety can affect the practicality of deflection techniques, complicating mission-level planning.

The debris kicked out would transfer momentum, shifting the asteroid’s orientation in space — an aspect that had not been accounted for in previous models. Unaccounted for, these forces may have led to future missions missing their deflection targets. Sunshine emphasised that such subtle forces are critical, likening future planetary defence efforts to “a cosmic pool game” where missing a shot could have planetary consequences.

ESA’s Hera mission, to the Didymos-Dimorphos system in 2026, will demonstrate these predictions and reveal more about the physics of the boulder-flying impact. The need for two points of view is already apparent from the LICIACube data, Farnham stressed. With Hera’s help, researchers aim to refine their models to better prepare for the next real-life asteroid threat.

Continue Reading

Science

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Published

on

By

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Reports indicate that for three days this summer – July 9, July 22 and August 5 – Earth’s rotation will speed up slightly, trimming 1.3 to 1.5 milliseconds off each day. Imperceptible in everyday life, this shift underscores how the Moon’s position influences our planet’s spin. For reference, the shortest day on record was July 5, 2024, lasting 1.66 milliseconds less than 24 hours. Over billions of years Earth’s rotation has slowly lengthened, but recent data show speedups. Scientists say monitoring these tiny changes is important for understanding Earth’s dynamics and timekeeping.

Causes of Faster Spin

According to timeanddate.com, the shortest-ever recorded day was on July 5, 2024, which was 1.66 milliseconds shy of 24 hours. The acceleration is largely driven by the Moon’s gravity. On those dates (July 9, July 22 and August 5), the Moon will lie far north or south of Earth’s equator, weakening its tidal braking on our planet’s spin. As a result, Earth rotates a bit faster – like spinning a top held at its ends. Seasonal shifts in mass distribution also affect rotation. Richard Holme of the University of Liverpool notes that summer growth and melting snow in the Northern Hemisphere move mass outward from Earth’s axis, slowing the spin in the same way an ice skater slows by extending her arms.

Timekeeping and Technology

Shifts in day length are handled by precise timekeeping. The International Earth Rotation and Reference Systems Service (IERS) monitors Earth’s spin and adds leap seconds to keep Coordinated Universal Time (UTC) in sync with solar time. Normally a second is added when Earth’s rotation slows, but if the spin-up trend continues, scientists have floated a “negative leap second” – removing a second – to realign clocks.

Dr. Michael Wouters of Australia’s National Measurement Institute says this fix would be unprecedented, and notes that even if a few seconds accumulated over decades, it would likely go unnoticed. Dr. David Gozzard of the University of Western Australia points out that GPS satellites, communications networks and power grids rely on atomic clocks synced to nanoseconds, and that millisecond-scale changes in Earth’s rotation are easily absorbed by these systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Unpacked 2025: Galaxy Z Flip 7 Launched in India With 4.1-Inch Cover Screen, Exynos 2500 SoC



The Last of Us Part 2 Remastered Gets New Free Update That Allows Players to Experience Story Chronologically

Continue Reading

Trending