Connect with us

Published

on

In 2019, the Event Horizon Telescope (EHT) collaboration produced the first-ever image of a black hole, stunning the world.

Now, scientists are taking it further. The next generation Event Horizon Telescope (ngEHT) collaboration aims to create high-quality videos of black holes.

But this next-generation collaboration is groundbreaking in other ways, too. It’s the first large physics collaboration bringing together perspectives from natural sciences, social sciences and the humanities.

For a virtual telescope spanning the planet, the larger a telescope, the better it is at seeing things that look tiny from far away. To produce black hole images, we need a telescope almost the size of Earth itself. That’s why the EHT uses many telescopes and telescope arrays scattered across the globe to form a single, virtual Earth-sized telescope. This is known as very long baseline interferometry.

Harvard astrophysicist Shep Doeleman, the founding director of the EHT, has likened this kind of astronomy to using a broken mirror. Imagine shattering a mirror and scattering the pieces across the world. Then you record the light caught by each of these pieces while keeping track of the timing, and collect those data in a supercomputer to virtually reconstruct an Earth-sized detector.

The 2019 first-ever image of a black hole was made by borrowing existing telescopes at six sites. Now, new telescopes at new sites are being built to better fill in the gaps of the broken mirror. The collaboration is currently in the process of selecting optimal places across the world, to increase the number of sites to approximately 20.

This ambitious endeavour needs over 300 experts organised into three technical working groups and eight science working groups. The history, philosophy and culture working group has just published a landmark report outlining how humanities and social science scholars can work with astrophysicists and engineers from the first stages of a project.

The report has four focus areas: collaborative knowledge formation, philosophical foundations, algorithms and visualisation, and responsible telescope siting.

How can we all collaborate? If you’ve ever tried to write a paper (or anything!) with someone else, you know how difficult it can be. Now imagine trying to write a scientific paper with over 300 people.

Should one expect each author to believe and be willing to defend every part of the paper and its conclusions? How should we all determine what will be included? If everyone has to agree with what is included, will this result in only publishing conservative, watered-down results? And how do you allow for individual creativity and boundary-pushing science (especially when you are attempting to be the first to capture something)? To resolve such questions, it’s important to balance collaborative approaches and structure everyone’s involvement in a way that promotes consensus, but also allows people to express dissent. Diversity of beliefs and practices among collaboration members can be beneficial to science.

How do we visualise the data? The aesthetic choices regarding the final black hole images and videos take place in a broader context of visual culture.

In reality, blue flames are hotter than flames appearing orange or yellow. But in the above false-colour image of Sagittarius A* – the black hole at the centre of the Milky Way – the colour palette of orange-red hues was chosen as it was believed orange would communicate to wider audiences just how hot the glowing material around the black hole is.

This approach connects to historical practices of technology-assisted scientific images, such as those by Galileo, Robert Hooke, and Johannes Hevelius. These scientists combined their early telescopic and microscopic images with artistic techniques so they would be legible to non-specialist audiences (particularly those who did not have access to the relevant instruments).

How philosophy can help Videos of black holes would be of significant interest to theoretical physicists. However, there is a bridge between formal mathematical theory and the messy world of experiment where idealised assumptions often do not hold up.

Philosophers can help to bridge this gap with considerations of epistemic risk – such as the risk of missing the truth, or making an error. Philosophy also helps to investigate the underlying assumptions physicists might have about a phenomenon.

For example, one approach to describing black holes is called the “no-hair theorem”. It’s the idea that an isolated black hole can be simplified down to just a few properties, and there’s nothing complex (hairy) about it. But the no-hair theorem applies to stable black holes. It relies on an assumption that black holes eventually settle down to a stationary state.

Responsible telescope siting The choice of locations for telescopes, or telescope siting, has historically been determined by technical and economic considerations – including weather, atmospheric clarity, accessibility and costs. There has been a historic lack of consideration for local communities, including First Nations peoples.

As the struggle at Mauna Kea in Hawai’i highlights, scientific collaborations are obligated to address ethical, social and environmental considerations when siting.

The ngEHT aims to advance responsible siting practices. It draws together experts in philosophy, history, sociology, community advocacy, science, and engineering to contribute to the decision-making process in ways that include cultural, social and environmental factors when choosing a new telescope location.

Overall, this collaboration is an exciting example of how ambitious plans demand innovative approaches – and how sciences are evolving in the 21st century.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Profluent Unveils AI DNA Editor Generator OpenCRISPR to Cure Diseases

Published

on

By

Profluent Unveils AI DNA Editor Generator OpenCRISPR to Cure Diseases

Profluent, a California-based artificial intelligence (AI)-first protein design company, announced its AI model that can generate CRISPR-like proteins that do not occur in nature on Tuesday. CRISPR or Clustered Regularly Interspaced Short Palindromic Repeats is a complex containing important proteins that scientists can use for precise gene editing in organisms. The company claims the usage of AI can create a vast number of such proteins that can help in creating bespoke cures for diseases which, at present, remain incurable.

Ali Madani, the founder and CEO of Profluent announced the AI model in a series of posts on X (formerly known as Twitter). The company has also made a blog post detailing the initiative and a pre-print version of its research paper has been published on bioRxiv. Besides announcing the DNA editor-generating AI model, the company also launched OpenCRISPR-1, one of the AI-created gene editors, as an initial open-source release licencing it for both ethical research and commercial uses.

Why OpenCRISPR AI Model matters

While CRISPR is a major focus of scientists, the research is limited due to the protein Cas9, which acts as a gene editor, and its equivalent being only available in nature. As a result, scientists spend a significant amount of time discovering different types of gene editors and their impact. Profluent claims its AI model, which is powered by an in-house large language model (LLM) trained on “massive scale sequence and biological context”, can now generate millions of diverse CRISPR-like proteins that do not occur in nature. In theory, these synthetic gene editors can play a pivotal role in finding cures for diseases previously thought to be incurable.

In its blog post, the company said, “OpenCRISPR-1 gene editor maintains the prototypical architecture of a Type II Cas9 nuclease but is more than 400 mutations away from SpCas9 and nearly 200 mutations away from any other known natural CRISPR-associated protein.”

What is CRISPR

CRISPR, put simply, is a complex or system found in bacteria and some other unicellular organisms. This complex contains the Cas9 (or similar proteins like Cas12 and Cas13) proteins that have a specific ability to make precise cuts in gene strands of DNA to enable editing. It was first discovered in 1987, and ever since scientists have been researching it extensively. The technology has vast applications and has already been used to artificially create crop variants that have a higher yield, are resistant to diseases, and are drought tolerant.

It is also used to change the DNA of mosquitoes so that they cannot spread diseases like malaria. Experiments are being conducted to cure patients suffering from diseases such as sickle-cell anaemia. It is also theorised that the technology can be used to edit the DNA of the embryo to create babies who are naturally resistant to diseases and possess genes that promote higher physical and mental abilities.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Watch Boston Dynamics’ New Atlas Robot Show Off Superhuman Movements

Published

on

By

Watch Boston Dynamics’ New Atlas Robot Show Off Superhuman Movements

Boston Dynamics unveiled the next generation of its humanoid Atlas robot on Wednesday. The announcement came just a day after the company retired the hydraulic Atlas robot. The new Atlas is fully electric and comes with several upgrades over the predecessor, including a superhuman range of motion. In a video, the slender and more athletic robot was shown moving in ways that defy human anatomy. The robotics giant claims it will be able to lift and manoeuvre a wide variety of objects.

In a video posted on YouTube, Boston Dynamics introduced the electric Atlas robot designed for real-world applications. Based on the demo, the new robot now has an entirely different design. It no longer possesses a heavy torso plate or carries a wider upper body. The new Atlas has a slender, metallic torso, longer and straighter limbs, no externally connected cables, and a ring light circling its head.

The demo begins with Atlas lying on the ground. As it boots up, the humanoid robot twists and folds its legs backwards over its body and then stands up as it twists its waist by 180 degrees as if a creature from a sci-fi horror movie. In the next few moments, it rotates its head a couple of times showcasing its head that appears to be a large camera lens and walks away taking straighter and concise strides.

In less than a minute, the video demonstrated that the new Atlas robot is not only more agile and flexible, it might also potentially move heavier objects given its larger limbs. Explaining its vision, Boston Dynamics said in a press release, “We designed the electric version of Atlas to be stronger, more dexterous, and more agile. Atlas may resemble a human form factor, but we are equipping the robot to move in the most efficient way possible to complete a task, rather than being constrained by a human range of motion.”

Currently, the electric Atlas is in testing and it will stay that way for the next few years. In this period, the company plans to explore multiple new gripper variations to enable the robot to perform a diverse set of tasks. The testing phase will include a limited number of customers, with Hyundai being the first in the line.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Solar Eclipse 2024: List of Upcoming Eclipses, Safety Tips, and More

Published

on

By

Solar Eclipse 2024: List of Upcoming Eclipses, Safety Tips, and More

The first solar eclipse of 2024 is all set to darken the skies on April 8. This particular event will be a total solar eclipse, a rare occurrence on Earth. After this event, the next total solar eclipse in the same region will not be seen for two more decades. A total solar eclipse of similar impact is expected in 2044. This event will mainly be visible in North America, including Mexico, the US, and Canada. While a few more territories will observe it partially, the rest of the world cannot see it directly. Here’s everything you need to know about the latest solar eclipse, along with a list of all upcoming solar eclipses and more.

 

Total Solar Eclipse 2024: Date, Time, and Place

The total solar eclipse of 2024 will occur on April 8. The total darkening of the sky, also known as totality, will be visible across a 185-kilometre stretch between Mexico, the US, and Canada. It will start on Mexico’s Pacific coast at 11:07am PDT, and the eclipse will end on the Atlantic coast of Newfoundland, Canada, at 5:16pm NDT. As many as 18 different US States will also get to see it.

The total solar eclipse will not be visible from India. It will begin at 9:12 pm IST, a few hours after the Sun is set. Totality will start at 10:08pm IST, and the eclipse will end at 2:22am IST on April 9.

Total Solar Eclipse 2024: How to Watch it Live Online

While people in India and other countries, excluding North America, cannot physically witness the total solar eclipse, astronomy enthusiasts can still follow it online. There will be multiple live streams covering this rare celestial event. NASA will start its live stream on April 8 at 5:00pm GMT (10:30pm IST) and continue until 8:00pm GMT (1:30am IST). You can watch the stream here.

Skywatching website timeanddate.com will also live stream the total solar eclipse on its YouTube channel starting at 4:30pm GMT (10:00pm IST) on April 8. The stream will provide real-time updates and background information as well.

Finally, the University of Maine will send a high-altitude science balloon into the sky and live stream a view of the total solar eclipse from the stratosphere. It can be watched here on April 8, starting at noon GMT (5:30pm IST).

Total Solar Eclipse 2024: List of Countries to Watch the Celestial Event

The total solar eclipse of 2024 will only be visible in some parts of Mexico, the US, and Canada.

List of Upcoming Solar Eclipse

According to data from timeanddate.com, the following solar eclipses are expected to be observed from the Earth.

Date Type Location
April 8, 2024 Total North America
October 2, 2024 Annular North and South America
March 29, 2025 Partial Europe, North Asia, North and West Africa
September 29, 2025 Partial South Australia
February 17, 2026 Annular Southern Africa, South America
August 12, 2026 Total Europe, North Asia
February 6, 2027 Annular Africa, South America
August 2, 2027 Total Europe, South Asia

What is a Solar Eclipse?

A solar eclipse is an astronomical phenomenon where the Moon passes between the Earth and the Sun and blocks the Sun’s light either entirely or partially. These events are infrequent and occasional since the Moon needs to be in the same plane as the Sun and the Earth, which does not always happen. Even when an alignment does occur, it is more likely to be partial than full. This is the reason why total solar eclipses are so rare.

On average, the Earth can get between two to five solar eclipses in a year. However, most of these are partial eclipses and are not very noticeable. Total eclipses are dramatic and turn the sky dark, but they are only visible from a few locations. This is why the opportunity to experience an eclipse is often called a once-in-a-lifetime opportunity.

Different Types of Solar Eclipses

There are three types of solar eclipses. A solar eclipse can be defined as partial, total, or annular, depending on the Moon’s position. Here are the full details:

Partial solar eclipse: A partial solar eclipse occurs when the Moon partially covers the Sun, but some of the Sun’s light can still reach the Earth. When a partial solar eclipse occurs, a portion of the Sun appears to have vanished. It can be observed in a larger area.

Total solar eclipse: A total solar eclipse occurs when the Moon and the Sun are on the same plane, and the Moon is at such a distance from the Earth that it covers the Sun for a brief period. Unlike a partial solar eclipse, it is usually visible from a smaller strip of land.

Annular solar eclipse: Finally, during an annular solar eclipse, the Moon is placed far away from the Earth and is unable to cover the Sun entirely. At the peak of this solar eclipse, the Moon covers the central portion of the Sun, and only a ring of light can be seen from the Earth.

Things to Remember to View Upcoming Solar Eclipse Safely

While it is never recommended to look directly at the Sun since its intense brightness and harmful ultraviolet radiation can cause permanent damage to the unaided eye, this becomes even more important during a solar eclipse. Darkened skies can create a false impression that the Sun’s intensity is reduced and that it is safe to look at it; however, any escaping sunlight will cause the same amount of damage to the eye. This is why precautions must always be taken before viewing a solar eclipse event.

1. People should use safe solar viewing glasses when watching a solar eclipse directly.

2. Regular sunglasses, no matter how dark, are not safe to look at the Sun directly.

3. Binoculars, camera lenses, telescopes, or any other optical devices should not be used with solar viewing glasses, as concentrated solar rays can burn through the filter.

4. Proper solar filters should be added to optical devices before viewing the Sun through them.

5. If solar glasses are unavailable, people can opt for indirect viewing of the solar eclipse. NASA highlighted the pinhole projector method, where a small hole punched into an index card can project an image of the Sun on a surface through which the eclipse can be seen.

Frequently Asked Questions (FAQs) 

What is so special about the solar eclipse 2024?

The 2024 total solar eclipse is one of the rare celestial events that occur across the globe. It will be the most watched solar eclipse as it passes through various large cities. Moreover, it is also the last total solar eclipse across the United States for 20 years.  

How long will the 2024 eclipses last?

According to official NASA data, the total solar eclipse will last 4 minutes and 28 seconds. In most places, it will be visible for approximately 3.5 and 4 minutes. 

What is the timing of solar eclipse on 8 April 2024?

As per the Indian Standard Time (IST), the total solar eclipse will start at 9:12 pm, while the totality will begin at 10:08 pm. The eclipse will end on April 9, 2024, at 2:22 am. 

Is the April 8th solar eclipse visible in India?

Sadly, the total solar eclipse will only be visible in the United States and not in India. 
 

Continue Reading

Trending