Connect with us

Published

on

Elon Musk’s SpaceX made final preparations early on Monday to launch its powerful new Starship rocket system to space for the first time, on a brief but highly anticipated uncrewed test flight from the Gulf Coast of Texas.

The two-stage rocketship, standing taller than the Statue of Liberty at 394 feet (120 m) high, was due for blastoff from the SpaceX facility at Boca Chica, Texas, during a two-hour launch window that opens at 8 a.m. EDT (1200 GMT).

The test mission, whether or not its objectives are entirely met, represents a key milestone in SpaceX’s ambition of sending humans back to the moon and ultimately to Mars – also the central goal of a renewed NASA spaceflight program intended to integrate the Starship.

But SpaceX faces enormous challenges in merely launching a spacecraft that would instantly become, if it successfully gets off the ground, the most powerful rocket on Earth.

“Success is not what should be expected,” Musk told a private Twitter audience on Sunday night, saying the best-case scenario would provide crucial data about how the vehicle ascends to space and how it will fly back to Earth.

“Probably, tomorrow will not be successful, he said. “It’s just a very fundamentally difficult thing.”

Earlier on Sunday, the California-based company said on Twitter its launch teams were moving ahead with flight preparations, while keeping a close eye on potential wind-shear conditions in the forecast that could force a delay.

On Sunday night, Musk said, “it’s more likely” for the flight to be postponed than to launch on Monday. SpaceX has backup launch windows on Tuesday and Wednesday for roughly the same times.

‘LIKE A METEOR’

Both the lower-stage Super Heavy booster rocket and the upper-stage Starship cruise vessel it will carry to space are designed as reusable components, capable of flying back to Earth for soft landings – a maneuver that has become routine for SpaceX’s smaller Falcon 9 rocket.

But neither stage will be recovered for the expendable first test flight to space, expected to last no more than 90 minutes.

Prototypes of the Starship cruise vessel have made five sub-space flights up to 6 miles (10 km) above Earth in recent years, but the Super Heavy booster has never left the ground.

In February, SpaceX did a test-firing of the booster, igniting 31 of its 33 Raptor engines for roughly 10 seconds with the rocket bolted in place vertically atop a platform.

The Federal Aviation Administration just last Friday granted a license for what would be the first test flight of the fully stacked rocket system, clearing a final regulatory hurdle for the long-awaited launch.

If all goes as planned on Monday, all 33 Raptor engines will ignite simultaneously to loft the Starship on a flight that nearly completes a full orbit of the Earth before it re-enters the atmosphere and free-falls into the Pacific at supersonic speed about 60 miles (97 km) off the northern Hawaiian islands.

After separating from the Starship, the Super Heavy booster is expected to execute the beginnings of a controlled return flight before plunging into the Gulf of Mexico.

Starship’s blazing re-entry over the Pacific will test its ability to aerodynamically steer itself using large flaps and for its heat shielding to withstand the intense friction generated as it plummets through the atmosphere.

“The ship will be coming in like a meteor,” Musk said. “This is the first step in a long journey that will require many flights.”

Additional Super Heavy boosters were already on deck in Boca Chica for future test flights, he added.

As designed, the Starship rocket is nearly two times more powerful than NASA’s own Space Launch System (SLS), which made its debut uncrewed flight to orbit in November, sending a NASA cruise vessel called Orion on a 10-day voyage around the moon and back. 

© Thomson Reuters 2023


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

Published

on

By

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

The highly anticipated debut launch of Blue Origin’s New Glenn rocket has been scheduled for January 10, 2025. The heavy-lift rocket, designed for both commercial and government missions, will take off from Florida’s Cape Canaveral Space Force Station. A launch window of three hours, beginning at 1 a.m. EST, has been announced. The rocket’s inaugural flight marks a significant milestone for Blue Origin as the company aims to validate its capabilities and establish itself as a major player in the space industry.

New Glenn’s Mission and Capabilities

According to Blue Origin, as reported by space.com, the New Glenn rocket is a reusable, 320-foot-tall launch vehicle capable of carrying 50 tons (45 metric tons) to low Earth orbit (LEO). The NG-1 mission will test the company’s Blue Ring spacecraft platform, which is designed to support a variety of orbital payloads. This demonstration will include assessments of communication systems, in-space telemetry, and ground-based tracking capabilities. The payload will remain aboard the rocket’s second stage for a six-hour mission, as stated by Blue Origin.

Booster Recovery and Future Goals

The mission will also attempt a recovery of the rocket’s first stage booster, which will land on a ship stationed in the Atlantic Ocean, as per reports from space.com. The company’s senior vice president, Jarrett Jones, emphasised the importance of the flight, stating that rigorous preparations had been undertaken but that true insights could only be gained through actual launch experiences.

NG-1 is a critical step toward securing certification for U.S. national security missions. A successful outcome would bring Blue Origin closer to fulfilling these high-stakes contracts, further solidifying its position in the competitive aerospace sector.

This launch will serve as a proving ground for the New Glenn system, with valuable data expected to inform future missions and technology advancements.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Spiders Detect Smells Through Leg Hairs, Claims New Study

Published

on

By

Spiders Detect Smells Through Leg Hairs, Claims New Study

New research has revealed that spiders use specialised hairs on their legs to detect airborne scents, offering fresh insights into the sensory abilities of these arachnids. This discovery has resolved a long-standing question about how spiders, which lack antennae like insects, can identify odours such as pheromones. Male spiders were observed using olfactory hairs, known as wall-pore sensilla, to sense sex pheromones emitted by females. This mechanism underscores their ability to locate potential mates through chemical signals.

Olfactory Sensilla Identified

According to a study, published in the Proceedings of the National Academy of Sciences, the wall-pore sensilla were found on the upper legs of adult male wasp spiders (Argiope bruennichi). These microscopic structures are believed to be critical for detecting pheromones. High-resolution scanning electron microscopy revealed thousands of these sensilla, which were absent in females and juvenile males. This specific distribution supports their role in mate detection. Researchers emphasised to phys.org that these findings have mapped and identified the elusive sensilla, previously thought to be absent in spiders.

Response to Pheromones

Experiments demonstrated the sensitivity of these sensilla to pheromone compounds. Tiny amounts of the substance, such as 20 nanograms, elicited significant neuronal responses. The experiments involved exposing the sensilla to pheromone puffs, and responses were observed consistently across various leg pairs. The researchers concluded that spiders’ olfactory systems rival the sensitivity seen in insects, highlighting their advanced chemical detection capabilities.

Broader Implications

The study explored 19 other spider species and confirmed the presence of wall-pore sensilla in most male spiders, suggesting that this trait evolved multiple times. However, it was noted that some primitive species lack these structures. Future research is expected to investigate how female spiders detect smells, the types of chemicals relevant to their behaviours, and the evolutionary aspects of olfaction in spiders.

This breakthrough provides a foundation for understanding the sophisticated sensory mechanisms that govern spider behaviour.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

PFAS Chemicals Harm Freshwater Turtles in Australia, New Research Finds

Published

on

By

PFAS Chemicals Harm Freshwater Turtles in Australia, New Research Finds

Exposure to per- and polyfluoroalkyl substances (PFAS), often termed “forever chemicals,” is raising concerns over its impact on wildlife health. Recent research has uncovered significant health problems in freshwater turtles in Australia exposed to PFAS. These issues are not limited to adult turtles but extend to their hatchlings. PFAS, widely known for their persistence in the environment, have been found accumulating in the organs of these reptiles, potentially impacting their long-term survival and reproduction.

Study Reveals PFAS Impacts on Australian Turtles

According to a study published in Science of the Total Environment, researchers, led by David Beale, an environmental biochemist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), examined freshwater turtles (Emydura macquarii) from three locations in Queensland. These sites varied in PFAS contamination levels, with some showing high concentrations and others barely detectable. The study found that PFAS exposure disrupted metabolic functions in turtles and led to bioaccumulation in vital organs, including the ovaries, liver, kidneys, and heart.

In statements provided to Science News, Beale explained that hatchlings from lab-incubated eggs, derived from PFAS-exposed turtles, showed deformities such as scale abnormalities. He noted that contamination was transferred to offspring via fats and nutrients, raising alarms over generational health impacts.

Concerns Over Declining Juvenile Populations

Reports indicate that juveniles are missing in PFAS-contaminated sites. Beale suggested this could be linked to deformities making them vulnerable to predators or early mortality due to health issues. Differences in egg size and number were also observed, though direct connections to PFAS remain unconfirmed.

Experts Call for Urgent Action

Jean-Luc Cartron, a biologist at the University of New Mexico, expressed concern in his statement to Science News over these findings, emphasising the urgency to address ecological toxicity. He warned that delays in action could result in the loss of entire generations of wildlife.

The research team plans to expand studies to other species and regions, including crocodiles, frogs, and cane toads, to better understand the widespread impact of PFAS on wildlife.

https://www.gadgets360.com/science/news/nasa-delays-artemis-2-and-artemis-3-missions-to-address-key-technical-challenges-7321848

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending