Connect with us

Published

on

Japan’s ispace said its attempt to make the first private moon landing had failed after losing contact with its Hakuto-R Mission 1 (M1) lander when it unexpectedly accelerated and probably crashed on the lunar surface.

The startup said it was possible that as the lander approached the moon, its altitude measurement system had miscalculated the distance to the surface.

“It apparently went into a free-fall towards the surface as it was running out of fuel to fire up its thrusters,” Chief Technology Officer Ryo Ujiie told a news conference on Wednesday.

It was the second setback for commercial space development in a week after SpaceX‘s Starship rocket exploded spectacularly minutes after soaring off its launch pad.

A private firm has yet to succeed with a lunar landing. Only the United States, the former Soviet Union and China have soft-landed spacecraft on the moon, with attempts in recent years by India and a private Israeli company also ending in failure.

Ispace, which delivers payloads such as rovers to the moon and sells related data, had only just listed on the Tokyo Stock Exchange two weeks ago and a frenzy of excitement around its prospects had driven up its shares some seven-fold since then.

But disappointment led to a glut of sell orders on Wednesday. After being untraded all day, the stock finished down 20 percent in a forced closing price decided by the bourse that reflects the balance of buy and sell orders.

Japan’s top government spokesperson Hirokazu Matsuno said while it was sad that the mission did not succeed, the country wants ispace to “keep trying” as its efforts were significant to the development of a domestic space industry.

Japan, which has set itself a goal of sending Japanese astronauts to the moon by the late 2020s, has had some recent setbacks. The national space agency last month had to destroy its new medium-lift H3 rocket upon reaching space after its second-stage engine failed to ignite. Its solid-fuel Epsilon rocket also failed after launch in October.

Brakes on a high slope

Four months after launching from Cape Canaveral, Florida, on a SpaceX rocket, the M1 lander appeared set to autonomously touch down at about 1:40 am Japan time (1640 GMT Tuesday), with an animation based on live telemetry data showing it coming as close as 90 metres (295 feet) from the lunar surface.

By the expected touchdown time, mission control had lost contact with the lander and engineers appeared anxious over the live stream as they awaited signal confirmation of its fate which never came.

The lander completed eight out of 10 mission objectives in space that will provide valuable data for the next landing attempt in 2024, Chief Executive Takeshi Hakamada said.

Roughly an hour before planned touchdown, the 2.3 metre-tall M1 began its landing phase, gradually tightening its orbit around the moon from 100 km (62 miles) above the surface to roughly 25 km, travelling at nearly 6,000 km/hour (3,700 mph).

At such velocity, slowing the lander to the correct speed against the moon’s gravitational pull is like squeezing the brakes of a bicycle right at the edge of a ski-jumping slope, Ujiie has said.

The craft was aiming for a landing site at the edge of Mare Frigoris in the moon’s northern hemisphere where it would have deployed a two-wheeled, baseball-sized rover developed by the Japan Aerospace Exploration Agency, Tomy and Sony. It also planned to deploy a four-wheeled rover dubbed Rashid from the United Arab Emirates.

The lander was carrying an experimental solid-state battery made by Niterra among other devices to gauge their performance on the moon.

The mission was insured by Mitsui Sumitomo Insurance, an MS&AD Insurance Group unit, and ispace said it may receive some compensation.

© Thomson Reuters 2023
 


Smartphone companies have launched many compelling devices over the first quarter of 2023. What are some of the best phones launched in 2023 you can buy today? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Supernova Remnant G278.94+1.35 is Closer to Earth, Claims New Study

Published

on

By

Supernova Remnant G278.94+1.35 is Closer to Earth, Claims New Study

A significant discovery involving a supernova remnant in the Milky Way, identified as G278.94+1.35, has been made by a team of international astronomers. This structure, resulting from a massive stellar explosion, was initially thought to be approximately 8,800 light years away. New findings have revised this distance to about 3,300 light years, making it closer than previously calculated. The remnant’s estimated physical dimensions have also been adjusted to around 189 by 182 light years, contrary to earlier assessments of over 500 light years.

Insights from the Study

According to the study published December 30 on the pre-print server arXiv, highlighted the properties of this remnant. The research team, led by Miroslav D. Filipović, Professor at Western Sydney University, observations were conducted using the Australian Square Kilometer Array Pathfinder (ASKAP) as part of the ASKAP-Evolutionary Map of the Universe project. These observations revealed the nearly circular shape and expansive nature of the remnant, now named “Diprotodon,” in homage to an extinct giant marsupial native to Australia.

The research team attributed the name to raise awareness about the prehistoric megafauna of Australia and ongoing extinction challenges. The findings, as reported by phys.org indicate that the supernova remnant is in a radiative evolutionary phase, suggesting continued expansion.

Characteristics and Significance

Diprotodon’s progenitor star is estimated to have been about 15 times the mass of the Sun. The kinetic energy released during the explosion is approximated at 500 quindecillion ergs. The spectral index of the remnant, measured at around -0.55, aligns with typical shell-type remnants observed in the galaxy. These characteristics place it among the largest supernova remnants known, providing valuable insights into the dynamics of such structures.

The study has offered critical data regarding the formation, expansion, and current state of Diprotodon, contributing to the broader understanding of supernova remnants within the Milky Way.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.


PFAS Chemicals Harm Freshwater Turtles in Australia, New Research Finds



NISAR Satellite by NASA and ISRO to Monitor Earth Like Never Before

Continue Reading

Science

NISAR: NASA & ISRO’s joint satellite to monitor Earth like never before

Published

on

By

NISAR: NASA & ISRO’s joint satellite to monitor Earth like never before

A collaboration between NASA and the Indian Space Research Organisation (ISRO) has resulted in the NISAR (NASA-ISRO Synthetic Aperture Radar) satellite, which is set to launch in a few months. This mission, designed to track and monitor Earth’s dynamic surface, will use synthetic aperture radar technology to measure changes in land and ice formations. Capable of delivering precise data down to centimetre-level accuracy, NISAR will contribute significantly to understanding natural disasters, ice-sheet movements, and global vegetation shifts.

Unique Dual-Band Technology

According to an official press release by NASA, NISAR is equipped with two radar systems: the L-band with a wavelength of 25 centimetres and the S-band with a 10-centimetre wavelength. This dual-band configuration enables detailed observations of various features, from small surface elements to larger structures. These advanced radars will collect data frequently, covering nearly all land and ice surfaces to provide a comprehensive view of Earth’s transformations.

Technology and Data Applications

As per reports, synthetic aperture radar technology, first utilised by NASA in the 1970s, has been refined for this mission. The data from NISAR will support ecosystem research, cryosphere studies, and disaster response initiatives. Stored and processed in the cloud, the data will be freely accessible to researchers, governments, and disaster management agencies.

Collaboration Between NASA and ISRO

The partnership between NASA and ISRO, formalised in 2014, brought together teams to create this dual-band radar satellite. Hardware was developed across continents, with final assembly in India. ISRO’s Space Applications Centre developed the S-band radar, while NASA’s Jet Propulsion Laboratory provided the L-band radar and other key components. The satellite will launch from ISRO’s Satish Dhawan Space Centre and will be operated by ISRO’s Telemetry Tracking and Command Network.

NISAR’s deployment highlights international collaboration in addressing global challenges, promising transformative insights into Earth’s changing landscapes.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Velvet Ants Venom Affect Mammals and Insects Differently

Published

on

By

Velvet Ants Venom Affect Mammals and Insects Differently

Velvet ants, despite their name, are not ants but parasitic wasps known for their painful stings. These insects, often called “cow killers” due to the intensity of their sting, possess a potent venom capable of acting on different molecular targets depending on the species they encounter. Their defensive mechanisms, which include venom, warning colours, tough exoskeletons, and unique sounds when threatened, have made them nearly invincible to predators. This versatility has intrigued researchers studying their venom’s effects on various creatures.

Study Highlights Dual Mechanisms in Velvet Ant Venom

According to a study published in Current Biology, velvet ant venom operates differently across species. Researchers, including Lydia Borjon, a sensory neurobiologist at Indiana University Bloomington, found that distinct peptides in the venom affect mammals and insects in unique ways. Experiments conducted on the venom of the scarlet velvet ant (Dasymutilla occidentalis) revealed that specific peptides target sensory neurons differently in insects and mammals.

As reported in Science News, in insects, a peptide called Do6a specifically activates neurons sensitive to harmful stimuli. However, in mammals such as mice, pain is triggered by two less abundant peptides, Do10a and Do13a. These peptides activate a broad range of sensory neurons, inducing a generalised pain response. The findings suggest that velvet ants’ venom tailors its effects based on the biology of the recipient, showcasing a rare example of multi-target venom.

Broader Implications of the Research

Joseph Wilson, an evolutionary ecologist at Utah State University, noted to Science News, that velvet ants’ extensive defensive arsenal could be linked to evolutionary pressures from unknown predators, particularly insects. He suggested that while their venom effectively deters a wide range of species, its evolution might have been influenced by specific ecological interactions. Sam Robinson, a toxinologist at the University of Queensland, highlighted that this type of broad-spectrum venom, though rare, may not be unique, as most venoms are tested on limited species.

The study provides new insights into venom evolution and raises questions about the ecological factors driving the development of such complex defensive strategies.

https://www.gadgets360.com/science/news/nasa-delays-artemis-2-and-artemis-3-missions-to-address-key-technical-challenges-7321848

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending