A bill has been introduced in California which would require all EVs to have bidirectional charging capability starting in model year 2027.
The bill is numbered SB 233, introduced in the California Senate by Senator Nancy Skinner, who represents the Oakland area, just north of Tesla’s factory in Fremont; it has a lot of organizations supporting it.
It would require all new electric vehicles to be “bidirectional capable” by model year 2027.
The bill doesn’t specifically define “bidirectional-capable” and directs the California Energy Commission to convene a work group and produce a report on the bidirectional capabilities of various vehicles. This would likely include vehicle-to-grid capability, which means that the car’s battery can feed energy into the electrical grid (or a microgrid), much the same way that a home solar system does when it produces more than a home can consume.
There are other types of bidirectional usage available for EVs, notably vehicle-to-load and vehicle-to-home. V2L is the most limited type and typically has lower peak draw capability – for example, the 1.8kW capability on the Kia Niro EV. V2H allows homeowners to power their home with a car’s battery, much like a Tesla Powerwall might work or like Ford’s “Intelligent Backup Power” system.
Another umbrella term for all of this is “vehicle-to-everything,” or V2X.
The bill is meant to help California’s grid tackle challenges with peak loads. As climate change makes temperatures hotter, California’s grid is often overtaxed on the hottest summer days, which are becoming more numerous. Even worse, natural gas peaker plants are the highest-polluting form of electricity California consumes, and these need to be used at peak times in order to deal with high demand.
Electric cars can be a solution to this problem, since they could function as a distributed backup system for the grid. With incentives to charge overnight (utilities give cheaper rates for night charging) and additional incentives to discharge a battery when demand is high, EV owners could help the grid, the air, and also potentially their pocketbooks by buying electricity when it is cheap and putting it back onto the grid when it’s expensive.
California has already moved to incentivize grid-connected storage with its recent changes to its solar net metering program. In a change that was controversial for many rooftop solar advocates, the new 3.0 net metering provision gave higher incentives to stationary battery storage and fewer incentives to normal nonbattery rooftop solar installations.
But there aren’t a lot of V2G-capable cars out there. Currently, only one EV on the market is fully V2G capable and has an available charger to unlock that capability for fleets. That car is also the oldest EV on the market – the Nissan Leaf, which was introduced in 2011 and has been equipped with bidirectional charging capability since 2013. But it only finally got its charger last September, several years after introduction and four years after Nissan partnered with Fermata Energy to deliver this charger.
Other vehicles have V2L or V2H capabilities (or have been promised to eventually have V2G capabilities), but only one is fully V2G capable in the US at the moment.
The bill has already been through two committees (Transportation and Energy, Utilities and Communications), during which it has been watered down significantly. Earlier versions of the bill would have also applied to all electric vehicle supply equipment (chargers), had specific incentives for bidirectional-capable EVs, and may have required these vehicles to use interoperable standards, but these aspects have all been removed as the bill has been amended.
Next, it has to go through the Appropriations committee, then pass through the state Senate and Assembly, and get signed by the governor – so there’s a lot more to go, with the potential that anything could be changed by more amendments.
Then many specifics of implementation would be left up to the California Air Resources Board, California Energy Commission, and California Public Utilities Commission, and the work group convened to study this issue. This includes potentially exempting certain vehicles from the requirements if they are found not to have a “likely beneficial bidirectional-capable use case.”
Electrek’s Take
V2G hasn’t really taken off with consumers, not solely because there aren’t many vehicles available that allow it but also because it’s not all that easy to use. You can’t just plug your car into an outlet and use it – you need to have a grid interconnect, a system which manages the charging and discharging of your vehicle, and so on.
So far, V2G has been more of a curiosity or potentially something for fleets which have large amounts of dispatchable power, but not really something that consumers can take advantage of.
A system like Tesla’s Virtual Power Plant, which connects Powerwall owners together into a large, automatically-dispatchable reserve of power for the grid (all while making those Powerwall owners money), would make it easier for consumers to use their cars in this way.
And having the force of law behind it, requiring all vehicles to be capable of this, could just be the kick-start needed to make these widespread. V2G definitely benefits from a network effect, where it becomes more useful the more people participate.
There’s no real point to a single person discharging their car into the grid, but when millions of cars are involved, you could work to flatten out the famous “duck curve,” which describes the imbalance between electricity supply and demand. We hear a lot about “intermittency” as the problem with wind and solar, and grid storage as the solution to that, so being able to immediately switch on gigawatt-hours worth of installed storage capacity would certainly help to solve that problem.
And that could be worth a tremendous amount of money to the grid. Not only does it eliminate peaker plant usage, which is costly both economically and environmentally, but it also saves money on grid storage installation and helps to avoid costly and even deadly widespread power outages. These benefits could be thought to balance out any cost of additional incentives for V2G-capable cars. But many of those benefits are had simply by charging the car at the right time, which helps to balance out peaks and troughs on its own.
The question of cost is important. This could increase the cost of EVs, and certainly of electrical charger installations. Will the incentive be enough to make up for this increased cost for consumers? Will enough people install grid interconnections to make this useful? And how can they even do so, when there’s a massive backlog of people waiting for grid interconnections to be installed?
And with 2027 coming so soon, do automakers have time to implement this, given that Nissan’s system took more than a decade to get a V2G-capable charger commercially available in the US? Tesla’s VP of Powertrain and Energy, Drew Baglino, recently said it could have bidirectional charging in two years, and immediately afterward, CEO Elon Musk stepped in to say that he thought nobody would want to use bidirectional charging.
This brings up a point: It still remains to be seen if car owners would accept having their car’s charge controlled by an algorithm. People are already obsessed with buying cars that have much more range than they need, so coming back to a car and finding out it’s got 100 fewer miles than you left it at might rattle some owners. This is solvable by setting minimum thresholds in an app, but that could also limit the overall usefulness of the system to the grid.
While this is a great idea that could solve many problems for California and elsewhere, we could see it being difficult to implement unless the system is made easy to use, easy to install, and people are properly incentivized to use it in a manner that is understandable to a public that doesn’t know the difference between a kilowatt and a kilowatt-hour. State regulators will have their work cut out for them to design these regulations by the end of 2024 as the bill describes, but if they get it right, this could finally give us the V2G dream we’ve been thinking of for so long.
FTC: We use income earning auto affiliate links.More.
In a bold bid to combat the crippling air pollution crisis in its capital, Delhi, Indian lawmakers have begun high-level discussions about a plan to phase out gas and diesel combustion vehicles by 2035 – a move that could cause a seismic shift in the global EV space and provide a cleaner, greener future for India’s capital.
Long considered one of the world’s most polluted capital cities, Indian capital Delhi is taking drastic steps to cut back pollution with a gas and diesel engine ban coming soon – but they want results faster than that. As such, Delhi is starting with a city-wide ban on refueling vehicles more than 15 years old, and it went into effect earlier this week. (!)
“We are installing gadgets at petrol pumps which will identify vehicles older than 15 years, and no fuel will be provided to them,” said Delhi Environment Minister Manjinder Singh Sirsa … but they’re not stopping there. “Additionally, we will intensify scrutiny of heavy vehicles entering Delhi to ensure they meet prescribed environmental standards before being allowed entry.”
The Economic Times is reporting that discussions are underway to pass laws requiring that all future bus purchases will be required to be electric or “clean fuel” (read: CNG or hydrogen) by the end of this year, with a gas/diesel ban on “three-wheelers and light goods vehicles,” (commercial tuk-tuks and delivery mopeds) potentially coming 2026 to 2027 and a similar ban privately owned and operated cars and bikes coming “between 2030 and 2035.”
Electrek’s Take
Xpeng EV with Turing AI and Bulletproof battery; via XPeng.
Last week, Parker Hannifin launched what they’re calling the industry’s first certified Mobile Electrification Technology Center to train mobile equipment technicians make the transition from conventional diesel engines to modern electric motors.
The electrification of mobile equipment is opening new doors for construction and engineering companies working in indoor, environmentally sensitive, or noise-regulated urban environments – but it also poses a new set of challenges that, while they mirror some of the challenges internal combustion faced a century ago, aren’t yet fully solved. These go beyond just getting energy to the equipment assets’ batteries, and include the integration of hydraulic implements, electronic controls, and the myriad of upfit accessories that have been developed over the last five decades to operate on 12V power.
At the same time, manufacturers and dealers have to ensure the safety of their technicians, which includes providing comprehensive training on the intricacies of high-voltage electric vehicle repair and maintenance – and that’s where Parker’s new mobile equipment training program comes in, helping to accelerate the shift to EVs.
“We are excited to partner with these outstanding distributors at a higher level. Their commitment to designing innovative mobile electrification systems aligns perfectly with our vision to empower machine manufacturers in reducing their environmental footprint while enhancing operational efficiency,” explains Mark Schoessler, VP of sales for Parker’s Motion Systems Group. “Their expertise in designing mobile electrification systems and their capability to deliver integrated solutions will help to maximize the impact of Parker’s expanding METC network.”
Advertisement – scroll for more content
The manufacturing equipment experts at Nott Company were among the first to go through the Parker Hannifin training program, certifying their technicians on Parker’s electric motors, drives, coolers, controllers and control systems.
“We are proud to be recognized for our unwavering dedication to advancing mobile electrification technologies and delivering cutting-edge solutions,” says Nott CEO, Markus Rauchhaus. “This milestone would not have been possible without our incredible partners, customers and the team at Nott Company.”
In addition to Nott, two other North American distributors (Depatie Fluid Power in Portage, Michigan, and Hydradyne in Fort Worth, Texas) have completed the Parker certification.
Electrek’s Take
T7X all-electric track loader at CES 2022; via Doosan Bobcat.
With the rise of electric equipment assets like Bobcat’s T7X compact track loader and E10e electric excavator that eliminate traditional hydraulics and rely on high-voltage battery systems, specialized electrical systems training is becoming increasingly important. Seasoned, steady hands with decades of diesel and hydraulic systems experience are obsolete, and they’ll need to learn new skills to stay relevant.
Certification programs like Parker’s are working to bridge that skills gap, equipping technicians with the skills to maximize performance while mitigating risks associated with high-voltage systems. Here’s hoping more of these start popping up sooner than later.
Based on a Peterbilt 579 commercial semi truck, the ReVolt EREV hybrid electric semi truck promises 40% better fuel economy and more than twice the torque of a conventional, diesel-powered semi. The concept has promise – and now, it has customers.
Austin, Texas-based ReVolt Motors scored its first win with specialist carrier Page Trucking, who’s rolling the dice on five of the Peterbilt 579-based hybrid big rigs — with another order for 15 more of the modified Petes waiting in the wings if the initial five work out.
The deal will see ReVolt’s “dual-power system” put to the test in real-world conditions, pairing its e-axles’ battery-electric torque with up to 1,200 miles of diesel-extended range.
ReVolt Motors team
ReVolt Motors team; via ReVolt.
The ReVolt team starts off with a Peterbilt, then removes the transmission and drive axle, replacing them with a large genhead and batteries. As the big Pete’s diesel engine runs (that’s right, kids – the engine stays in place), it creates electrical energy that’s stored in the trucks’ batteries. Those electrons then flow to the truck’s 670 hp e-axles, putting down a massive, 3500 lb-ft of Earth-moving torque to the ground at 0 rpm.
Advertisement – scroll for more content
The result is an electrically-driven semi truck that works like a big BMW i3 or other EREV, and packs enough battery capacity to operate as a ZEV (sorry, ZET) in ports and urban clean zones. And, more importantly, allows over-the-road drivers to hotel for up to 34 hours without idling the engine or requiring a grid connection.
That ability to “hotel” in the cab is incredibly important, especially as the national shortage of semi truck parking continues to worsen and the number of goods shipped across America’s roads continues to increase.
And, because the ReVolt trucks can hotel without the noise and emissions of diesel or the loss of range of pure electric, they can immediately “plug in” to existing long-haul routes without the need to wait for a commercial truck charging infrastructure to materialize.
“Drivers should not have to choose between losing their longtime routes because of changing regulatory environments or losing the truck in which they have already made significant investments,” explains Gus Gardner, ReVolt founder and CEO. “American truckers want their trucks to reflect their identity, and our retrofit technology allows them to continue driving the trucks they love while still making a living.”
If all of that sounds familiar, it’s probably because you’ve heard of Hyliion.
In addition to being located in the same town and employing the same idea in the same Peterbilt 579 tractor, ReVolt even employs some of the same key players as Hyliion: both the company’s CTO, Chandra Patil, and its Director of Engineering, Blake Witchie, previously worked at Hyliion’s truck works.
Still, Hyliion made their choice when they shut down their truck business. ReVolt seems to have picked up the ball – and their first customer is eager to run with it.
“Our industry is undergoing a major transition, and fleet owners need practical solutions that make financial sense while reducing our environmental impact,” said Dan Titus, CEO of Page Trucking. “ReVolt’s hybrid drivetrain lowers our fuel costs, providing our drivers with a powerful and efficient truck, all without the need for expensive charging infrastructure or worrying about state compliance mandates. The reduced emissions also enable our customers to reduce their Scope 2 emissions.”
Page Trucking has a fleet of approximately 500 trucks in service, serving the agriculture, hazardous materials, and bulk commodities industries throughout Texas. And, if ReVolt’s EREV semis live up to their promise, expect them to operate a lot more than 20 of ’em.