Connect with us

Published

on

Indian Space Research Organisation (ISRO) Chairman S Somnath on Monday said that the Chandrayaan-3- the third edition of India’s mission to the moon- will be launched this July.

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface.

“I am very confident…” said Somnath today on the lunar mission.

The ISRO chairman was speaking after the space agency successfully placed the NVS-01, the first of the second-generation satellite series, into geosynchronous transfer orbit. The Geosynchronous Satellite Launch Vehicle deployed the NVS-01 navigation satellite from the second launch pad at the Satish Dhawan Space Centre (SDC SHAR) in Sriharikota in Andhra Pradesh.

Speaking to ANI, Somanath said, “The lesson is very simple. Learn from the past, and do what is possible with your capacity. Failures may happen. There are a thousand reasons for a rocket to fail. Even today, this mission could have failed. But we have to do what is needed to be done”.

Meanwhile, the Chandraayan-3 mission consists of an indigenous lander module a propulsion module and a rover with an objective of developing and demonstrating new technologies required for Inter planetary missions.

According to ISRO, the three mission objectives of the Chandrayaan-3 are- to demonstrate safe and soft landing on lunar Surface; to demonstrate Rover roving on the moon and to conduct in-situ scientific experiments.

It will be launched by the LVM3 rocket from SDSC SHAR centre in Sriharikota. The propulsion module will carry the lander and rover configuration till 100 km lunar orbit, according to ISRO.

The propulsion module has Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload to study the spectral and Polari metric measurements of Earth from the lunar orbit.

The Lander will have the capability to soft land at a specified lunar site and deploy the Rover which will carry out in-situ chemical analysis of the lunar surface during the course of its mobility. The Lander and the Rover have scientific payloads to carry out experiments on the lunar surface.

The main function of the Propulsion Module is to carry the Lander Module from launch vehicle injection till final lunar 100 km circular polar orbit and separate the Lander Module from the Propulsion Module.

Apart from this, the Propulsion Module also has one scientific payload as a value addition which will be operated post separation of Lander Module.

The launcher identified for Chandrayaan-3 is GSLV-Mk3 which will place the integrated module in an Elliptic Parking Orbit (EPO) of size 170 x 36500 km.

The Chandrayaan is an ongoing series of lunar space exploration programme of the ISRO. Chandrayaan-1, the first lunar probe of ISRO, in 2008-09 found water on the moon. The Chandrayaan-2 was launched in July 2019 and successfully inserted into orbit in August 2019. However, minutes its lander crash-landed on the moon after losing communication with the ground stations.

Earlier in the day, the ISRO Chairman Somnath congratulated the whole ISRO team after the successful launch of NVS-01.

“I would like to congratulate everyone on the outcome. The satellite is placed in the precised orbit. Congratulates to the entire ISRO for making this mission happen,” ISRO Chairman Somnath said in a press conference.

He appreciated the fact that the mission was accomplished after doing the rectifications after suffering a debacle during the last mission.

“This mission GV-F12 came after the debacle that happened in the F-10 mission where there was an issue in the cryogenic stage and the cryogenic engine could not get accomplished. I am very happy that the correction and modification at the cryogenic stage were done and we learnt the lessons to make our cryogenic stage more reliable. I want to specifically congratulate the entire ‘Failure Analysis Committee’ who went through this and made our life much better and also for the Liquid Propulsion System,” he said.

Somnath added, “Today the Navigation Satellite NVS-01 is the second generation of navigation satellite with additional capabilities that we have already brought into the satellite constellation where we make the signals more secure. We made a civilian frequency band L-1 and also introduced our Atomic Clock. And this is one of the five series of satellites with new configurations that are to be launched. I would like to thank all those who worked for this satellite and make the mission a grand success”.

Appreciating the government support, the ISRO Chairman also thanked the authorisation of the GSLV launch despite a failure during the last attempt.

“The confidence of the decision makers, our honourable Prime Minister Narendra Modi and other key functionaries who reviewed it to see that we have done the required work. The Navic Constellation is something very crucial for the nation to have a regional navigation constellation. I take this opportunity to tell you that we are going to make this Navic system fully functional and operational for the benefit of this nation,” he said.

He further said that the satellite is currently in Geosynchronous Transfer Orbit, from where it is the responsibility of the satellite team to correctly place it in the orbit.

Apprising about the future missions of ISRO, Chairman Somnath said, “In the coming months, we are going to launch PSLV as well as GSLV Mark-3. We are also going to launch the test vehicle of the Gaganyan (Man mission). Of course, the launches of further PSLV and SSLV are also in line”

“We are having the next launch of GSLV with a Climate and weather observation satellite called INSAT-3DS, which will be happening soon. And after that, the same rocket is bound to take NISR – India Nasa Synthetic Alergic Radar Satellite as well,” he added.


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Neuralink Device Helps Monkey See Something That’s Not There

Published

on

By

Neuralink Device Helps Monkey See Something That’s Not There

Elon Musk’s Neuralink Corp. used a brain implant to enable a monkey to see something that wasn’t physically there, according to an engineer, as it moves toward its goal of helping blind people see.

The device, called Blindsight, stimulated areas of a monkey’s brain associated with vision, Neuralink engineer Joseph O’Doherty said Friday at a conference. At least two-thirds of the time, the monkey moved its eyes toward something researchers were trying to trick the brain into visualizing.

The results were the first Neuralink has publicized about tests of Blindsight, a brain chip that mimics the function of an eye. This is a closely watched frontier for brain device development, a scientific field that’s testing the boundaries of how technology can be used to potentially treat intractable conditions.

As with all animal studies, it’s an open question how the results would apply to humans. The device isn’t approved for human use in the US.

The short-term goal of Blindsight is to help people see, and the long-term goal is to facilitate superhuman vision — like in infrared — Musk has said. The company has been testing Blindsight in monkeys for the past few years and is hoping to test it in a human this year, the billionaire said in March.

On the sidelines of the conference, O’Doherty declined to comment further about Neuralink’s work.

Neuralink is also implanting devices in people who are paralyzed that allow them to communicate directly with computers, one of several companies in the growing technological field.

Five people have received Neuralink implants so far, Musk has said. Three were implanted in 2024 and two in 2025, according to O’Doherty’s presentation at the Neural Interfaces conference. In some cases, patients are using their Neuralink device for about 60 hours a week.

In the future, brain devices using similar technology could allow paralyzed people to move or walk, Musk has said. O’Doherty co-authored a poster with academic researchers, which was presented at the conference, describing an experiment that used the Neuralink implant to stimulate the spinal cord of a monkey, causing its muscles to move. Other researchers have been working on spinal cord stimulation to restore muscle movement for several years.

Musk’s medical aspirations are a stepping stone toward the goal of increasing the speed of human communication for everyone, allowing people to “mitigate the risk of digital super-intelligence,” Musk said in 2024. He’s also building artificial intelligence through his company xAI Corp.

Eventually, the company wants the Blindsight system to include a pair of glasses to help make the chip work, O’Doherty said in his talk.

Testing in monkeys has advantages. The visual cortex in a monkey is closer to the surface of the brain than in a human, making it easier to access, O’Doherty said in the presentation. Neuralink could use its surgical robot to insert its implant into the deeper regions in a person’s brain, he added.

© 2025 Bloomberg L.P.

Continue Reading

Science

SpaceX Launches 26 New Starlink Satellites, Expands Global Internet Network

Published

on

By

SpaceX Launches 26 New Starlink Satellites, Expands Global Internet Network

SpaceX just aced another launch of its Starlink internet satellites. On Thursday night (June 12), the company launched 26 new Starlink spacecraft to join its ever-growing internet megaconstellation in orbit. Flying from Launch Complex 4 East (SLC-4E) at California’s Vandenberg Space Force Base, the launch occurred at 9:54 p.m. EDT (6:54 p.m. PDT or 0154 GMT) on June 13. The satellites are planned to be deployed into orbit from the second stage about one hour and one minute after liftoff. This accomplishment brings to more than 7,600 the number of active satellites for SpaceX’s Starlink.

As per SpaceX’s official update for its 15-6 mission, the rocket’s first-stage booster, known as B1081, flew for the 15th time after 14 prior flights. It successfully touched down on the droneship Of Course I Still Love You in the Pacific Ocean, off the coast of southern California, yet again. The company’s current record for reflight of Falcon 9 boosters is 28 flights, proving itself at the same time to be the best at orbital launch efficiency.

Thursday’s mission marks the 72nd Falcon 9 launch, with 53 of those dedicated to the Starlink network. The system aims to provide high-speed internet access around the world, and an increasing number of satellites provide direct-to-cell services for texting and a limited data connection on certain kinds of smartphones and through certain carriers.

Elon Musk’s SpaceX continues to add satellites to the Starlink constellation to increase redundancy and coverage, particularly in remote areas. The current constellation has wide coverage of the Earth, allowing small satellite dishes and mobile phones to connect to the internet in real time in dozens of countries.

SpaceX is simultaneously expanding the reach of Starlink and laying the groundwork for next-generation applications like in-flight connectivity and emergency response communications. With more than 7,600 satellites now orbiting Earth and as many as dozens of additional launches on the docket, Starlink is rapidly redefining how global internet coverage can work in the modern era.

Continue Reading

Science

Aurora Alert! Northern Lights May Be Visible as Far South as New York on June 14

Published

on

By

Aurora Alert! Northern Lights May Be Visible as Far South as New York on June 14

A rare display in the night sky could be visible to skywatchers in the U.S., as the National Oceanic and Atmospheric Administration (NOAA) has issued a geomagnetic storm watch for the night of June 14. The moderate G2-level event, fuelled by disturbances in solar wind, might produce auroras visible as far south as New York and Idaho, providing a spectacular light show far beyond the usual polar zones. While it’s welcome news for aurora enthusiasts, experts caution that extended daylight hours due to the approaching summer solstice could limit ideal viewing windows.

Coronal Hole Sparks Geomagnetic Storm; Auroras May Glow as Far South as New York June 14

As per the statement from NOAA’s Space Weather Prediction Centre (SWPC), this increase in geomagnetic activity is associated to a greater degree with a co-rotating interaction region (CIR), a turbulent region where high-speed streams of solar wind collide with slower-moving wind. While these CIRs may not be as dramatic as CMEs, they can still lead to shock waves that rattle the Earth’s magnetic field. The latest CIR was formed around a large coronal hole – a particularly dark region in the Sun’s outermost atmosphere – that is currently facing Earth and spewing high-speed solar wind directly into space.

Coronal holes are allowed to expand and develop into space weather due to reduced density and lower temperature solar wind pressing outward. Forecasts suggest a Kp index of 5.67 on 14 June, so there is another chance for auroras at lower latitudes.

To catch the northern lights, search for dark, clear skies in the hours before dawn, and check in with NOAA’s 3-day space weather forecast, as well as real-time resources like the “My Aurora Forecast & Alerts” app.

The aurora is weather and atmospheric conditions permitting, and should be visible for those based outside of the Arctic Circle viewing it during an approaching storm.

Continue Reading

Trending