Connect with us

Published

on

Indian Space Research Organisation (ISRO) Chairman S Somnath on Monday said that the Chandrayaan-3- the third edition of India’s mission to the moon- will be launched this July.

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface.

“I am very confident…” said Somnath today on the lunar mission.

The ISRO chairman was speaking after the space agency successfully placed the NVS-01, the first of the second-generation satellite series, into geosynchronous transfer orbit. The Geosynchronous Satellite Launch Vehicle deployed the NVS-01 navigation satellite from the second launch pad at the Satish Dhawan Space Centre (SDC SHAR) in Sriharikota in Andhra Pradesh.

Speaking to ANI, Somanath said, “The lesson is very simple. Learn from the past, and do what is possible with your capacity. Failures may happen. There are a thousand reasons for a rocket to fail. Even today, this mission could have failed. But we have to do what is needed to be done”.

Meanwhile, the Chandraayan-3 mission consists of an indigenous lander module a propulsion module and a rover with an objective of developing and demonstrating new technologies required for Inter planetary missions.

According to ISRO, the three mission objectives of the Chandrayaan-3 are- to demonstrate safe and soft landing on lunar Surface; to demonstrate Rover roving on the moon and to conduct in-situ scientific experiments.

It will be launched by the LVM3 rocket from SDSC SHAR centre in Sriharikota. The propulsion module will carry the lander and rover configuration till 100 km lunar orbit, according to ISRO.

The propulsion module has Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload to study the spectral and Polari metric measurements of Earth from the lunar orbit.

The Lander will have the capability to soft land at a specified lunar site and deploy the Rover which will carry out in-situ chemical analysis of the lunar surface during the course of its mobility. The Lander and the Rover have scientific payloads to carry out experiments on the lunar surface.

The main function of the Propulsion Module is to carry the Lander Module from launch vehicle injection till final lunar 100 km circular polar orbit and separate the Lander Module from the Propulsion Module.

Apart from this, the Propulsion Module also has one scientific payload as a value addition which will be operated post separation of Lander Module.

The launcher identified for Chandrayaan-3 is GSLV-Mk3 which will place the integrated module in an Elliptic Parking Orbit (EPO) of size 170 x 36500 km.

The Chandrayaan is an ongoing series of lunar space exploration programme of the ISRO. Chandrayaan-1, the first lunar probe of ISRO, in 2008-09 found water on the moon. The Chandrayaan-2 was launched in July 2019 and successfully inserted into orbit in August 2019. However, minutes its lander crash-landed on the moon after losing communication with the ground stations.

Earlier in the day, the ISRO Chairman Somnath congratulated the whole ISRO team after the successful launch of NVS-01.

“I would like to congratulate everyone on the outcome. The satellite is placed in the precised orbit. Congratulates to the entire ISRO for making this mission happen,” ISRO Chairman Somnath said in a press conference.

He appreciated the fact that the mission was accomplished after doing the rectifications after suffering a debacle during the last mission.

“This mission GV-F12 came after the debacle that happened in the F-10 mission where there was an issue in the cryogenic stage and the cryogenic engine could not get accomplished. I am very happy that the correction and modification at the cryogenic stage were done and we learnt the lessons to make our cryogenic stage more reliable. I want to specifically congratulate the entire ‘Failure Analysis Committee’ who went through this and made our life much better and also for the Liquid Propulsion System,” he said.

Somnath added, “Today the Navigation Satellite NVS-01 is the second generation of navigation satellite with additional capabilities that we have already brought into the satellite constellation where we make the signals more secure. We made a civilian frequency band L-1 and also introduced our Atomic Clock. And this is one of the five series of satellites with new configurations that are to be launched. I would like to thank all those who worked for this satellite and make the mission a grand success”.

Appreciating the government support, the ISRO Chairman also thanked the authorisation of the GSLV launch despite a failure during the last attempt.

“The confidence of the decision makers, our honourable Prime Minister Narendra Modi and other key functionaries who reviewed it to see that we have done the required work. The Navic Constellation is something very crucial for the nation to have a regional navigation constellation. I take this opportunity to tell you that we are going to make this Navic system fully functional and operational for the benefit of this nation,” he said.

He further said that the satellite is currently in Geosynchronous Transfer Orbit, from where it is the responsibility of the satellite team to correctly place it in the orbit.

Apprising about the future missions of ISRO, Chairman Somnath said, “In the coming months, we are going to launch PSLV as well as GSLV Mark-3. We are also going to launch the test vehicle of the Gaganyan (Man mission). Of course, the launches of further PSLV and SSLV are also in line”

“We are having the next launch of GSLV with a Climate and weather observation satellite called INSAT-3DS, which will be happening soon. And after that, the same rocket is bound to take NISR – India Nasa Synthetic Alergic Radar Satellite as well,” he added.


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Australia’s First Orbital Rocket Eris Fails at Historic Launch

Published

on

By

Australia’s First Orbital Rocket Eris Fails at Historic Launch

Recently, Australia has launched its first Eris Rocket Skyward; however, in no time, it didn’t get very far. But the history has been recorded in the books. The country has launched its own orbital that was entirely crafted within the country. The company Gilmour Space achieved the milestone on July 29th, 2025, when it sent its first Eris rocket into the sky. It took the flight from the Bowen Orbital Spaceport in coastal Queensland at 6:35 p.m. EDT (8:30 am local time in Australia).

How Did The Failure Occur?

As the liftoff commenced, the Eris couldn’t get far, and the rocket began to slide sideways. It soon rose off the pad and within a span of 14 seconds, crashed back to the Earth. This crash was best compared with that of the third orbital launch attempt enforced by Astra (California) in the year 2021. Although Gilmour Space was not entirely relying on the success.

Dating back to February, the Gilmour company stated, “Whether we make it off the pad, reach max Q, or get all the way to space, what’s important is that every second of the flight will deliver valuable data that will improve our rocket’s reliability and performance for future launches”. Significantly, post-launch, they issued a statement narrating that it is a big step for launch and that they have their eyes on it. Also, there were no injuries reported or other environmental impacts during the launch.

Behind the Scenes of Orbital Launch: The Plans and Execution

The orbital launch, which occurred on July 29th, 2025, was previously aimed to be executed in May; however, due to Tropical Cyclone Alfred, the Gilmour Space had to postpone it. Soon after the cyclone cleared, the company targeted the launch in mid-May, but could not proceed due to a technical issue, where the rocket’s payload fairing failed suddenly. As stated by Gilmour Space, the issue was caused due to a power surge.

After fixing the technical issues, the company again planned the launch for June. But, as Gilmour Space operates north of the town of Bowen, the winds did not fit well, and due to unfavourable weather, the launch was rescheduled for later. Finally, in July, it went off air.

To Conclude

Gilmour Space was founded by Adam Gilmour and James Gilmour. This brother duo aims to reach heights in the area of spaceflight. Not only is Eris their focus, but they have also invented satellites. The launch was a big attempt for the country, and such advancement was a big breakthrough in over 50 years.

Continue Reading

Science

New World Record Alert: Weather Satellite Records Longest Lightning Flash of 515 Miles

Published

on

By

New World Record Alert: Weather Satellite Records Longest Lightning Flash of 515 Miles

Back in the year 2017, when a thunderstorm exhibited a lightning bolt, it was astonishing in many ways. Not only was it surprising, but it was a bolt that went 515 miles (829 Kilometers) long. In recent scientific advancements, researchers have confirmed the length of the bolt using archival satellite data. The lightning stretched and travelled from Texas to Missouri. This lightning has finally made a world record by beating the previous record holder, which was a bolt that went 477 miles in the year 2020.

According to Randy Cerveny, an Arizona State University professor, who played a significant role in the study, stated, “We call it megaflash lightning and we’re just figuring out the mechanics of how and why it occurs”.

More About Megaflash Lightning

Megaflash lightning could be best described as a lightning bolt that possesses the capacity to reach 62 miles in length. Whereas, the average lightning bolt is less than 10 miles in length. In order to find the reason behind this megaflash, the team assessed the data from the National Oceanic and Atmospheric Administration’s GOES-16 satellite. This satellite is embedded with a lightning mapper that monitors over one million bolts on a daily basis. This analysis determined that the length of the bolt was 515 miles.

Know How a Megaflash is Measured

With the advancements in satellites, the lightning mappers have become an accurate source of measuring lightning. Previously, ground-based radio networks did the work. As mentioned on Space.com, according to Michael Peterson, Georgia Tech Research Institute, “Adding continuous measurements from geostationary orbit was a major advance”. We are now at a point where most of the global megalfash hotspots are covered by a geostationary satellite, and data processing techniques have improved to properly represent flashes in the vast quantity of observational data at all scales”.

Typically, these megaflashes are rare and are generated from less than one percent of the thunderstorms. These megaflashes are mainly a result of a 14-hour churn or more.

To conclude, as mentioned on Space.com, Cerveny stated, “Those conditions aren’t much rare though. And, as our lightning mapping satellites curate new data, the potential megaflashes are expected to be visible. Likewise, there is a possibility that megaflashes, even larger in length, exist. Over time, they will also be observed.

Continue Reading

Science

New Rogue Planet Discovered in Hubble Data Using Einstein’s Gravity Theory

Published

on

By

New Rogue Planet Discovered in Hubble Data Using Einstein’s Gravity Theory

Astronomers found that a new rogue planet hides in the archival data that was gathered by the Hubble Space Telescope with the help of Albert Einstein and the happening of the events by chance, leading to success. These planets are also known as free-floating planets and do not orbit a star. These are just ejected from their home systems because of the planetary interactions. As they lack a host star, it is difficult to detect them by transit. However, the astronomers use microlensing with gravity, Einstein’s 1915 theory-based phenomenon of general relativity, in which massive objects warp space and bend light from the background stars.

Einstein’s Theory Helps Detect Hidden Rogue Planet

According to As per Przemek Mroz, a professor at the University of Warsaw free free-floating planets don’t orbit any star and drift alone through the galaxy. In order to find such objects, we need to use the technique of gravitational microlensing. At the time of using this technique, the light of the background star gets magnified temporarily. The physicists estimate the mass of the object by analysing the properties of the event.

The newly found event of microlensing, OGLE-2023-BLG-0524, was seen by Hubble on May 22, 2023. Observed by KMTnet, the event only lasted for eight hours and was discovered in the Galactic bulge by the OGLE survey. The team ruled out the presence of a host star; however, very nearby elements can’t be excluded completely.

Microlensing Event Reveals Free-Floating Planet in Hubble Data

The lens and source are more relative to each other; the physicists confirm the status of the object over time. The movement of 5 milliseconds per year could take 10 years to resolve with the recent instruments.

Hubble’s data from 1997 let the scientists rule out the bright host stars. Mroz said that if the lens were a bright star, we would have observed it, but we could not. This absence evoked 25%-48% of the possible stellar companions. This research is available on arXiv.

Continue Reading

Trending