Connect with us

Published

on

A NASA panel formed last year to study what the government calls “unidentified aerial phenomena,” commonly termed UFOs, was due to hold its first public meeting on Wednesday, ahead of a report expected in coming weeks.

The 16-member body, assembling experts from fields ranging from physics to astrobiology, was formed last June to examine unclassified UFO sightings and other data collected from civilian government and commercial sectors.

The focus of Wednesday’s four-hour public session “is to hold final deliberations before the agency’s independent study team publishes a report this summer,” NASA said in announcing the meeting.

The panel represents the first such inquiry ever conducted under the auspices of the US space agency for a subject the government once consigned to the exclusive and secretive purview of military and national security officials.

The NASA study is separate from a newly formalised Pentagon-based investigation of unidentified aerial phenomena, or UAPs, documented in recent years by military aviators and analysed by US defense and intelligence officials.

The parallel NASA and Pentagon efforts — both undertaken with some semblance of public scrutiny — highlight a turning point for the government after decades spent deflecting, debunking and discrediting sightings of unidentified flying objects, or UFOs, dating back to the 1940s.

The term UFOs, long associated with notions of flying saucers and aliens, has been replaced in government parlance by “UAP.”

While NASA’s science mission was seen by some as promising a more open-minded approach to a topic long treated as taboo by the defense establishment, the US space agency made it known from the start that it was hardly leaping to any conclusions.

“There is no evidence UAPs are extraterrestrial in origin,” NASA said in announcing the panel’s formation last June.

In its more recent statements, the agency presented a new potential wrinkle to the UAP acronym itself, referring to it as an abbreviation for “unidentified anomalous phenomena.” This suggested that sightings other than those that appeared airborne may be included.

Still, NASA in announcing Wednesday’s meeting, said the space agency defines UAPs “as observations of events in the sky that cannot be identified as aircraft or known natural phenomena from a scientific perspective.”

US defense officials have said the Pentagon’s recent push to investigate such sightings has led to hundreds of new reports that are under examination, though most remain categorized as unexplained.

The head of the Pentagon’s newly formed All-domain Anomaly Resolution Office (AARO) has said the existence of intelligent alien life has not been ruled out but that no sighting had produced evidence of extraterrestrial origins.

© Thomson Reuters 2023


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Rocket Lab Launches Kushinada-I: A Leap Forward for Japan’s SAR Network

Published

on

By

Rocket Lab Launches Kushinada-I: A Leap Forward for Japan’s SAR Network

In early August 2025, Rocket Lab successfully launched QPS-SAR-12 (nicknamed Kushinada-I), a synthetic-aperture radar (SAR) satellite built by Japan’s iQPS (Institute for Q-shu Pioneers of Space). This mission, called “The Harvest Goddess Thrives” in honor of a Japanese goddess of harvest and prosperity, was Rocket Lab’s fifth dedicated launch for iQPS. The 59-foot (18-meter) Electron rocket lifted the satellite into a 575-km circular orbit. QPS-SAR-12 will join an expanding constellation of SAR Earth-imaging satellites, enabling all-weather, day-and-night observation. The launch exemplifies Rocket Lab’s niche role in deploying small dedicated satellites and advances iQPS’s goal of a 36-satellite global SAR network.

The “Harvest Goddess Thrives” Mission

According to Rocket Lab’s press release, the Electron rocket lifts off on Aug. 5, 2025, from Mahia, New Zealand. The mission, nicknamed “Harvest Goddess Thrives,” carried the QPS-SAR-12 radar satellite (Kushinada-I) for iQPS. The 18-meter vehicle powered away at 12:10 a.m. EDT (4:10 p.m. NZT).The Electron injected Kushinada-I into a planned 575-km sun-synchronous orbit about 54 minutes after liftoff.

Kushinada-I honors a Shinto harvest goddess and is formally designated QPS-SAR-12. This was Rocket Lab’s fifth mission for iQPS and the 69th Electron flight overall. Rocket Lab is also developing a larger Neutron rocket and operates a suborbital test vehicle (HASTE) for hypersonic research.

iQPS SAR Constellation and Applications

By mid-2025, ten QPS-SAR satellites were in orbit, and Kushinada-I became the 12th launched. iQPS plans a total of 36 small SAR spacecraft. Each satellite carries high-resolution SAR capable of imaging through clouds or at night. The full constellation is designed to revisit any target region roughly every 10 minutes, providing near-real-time monitoring.

The SAR network will image both fixed terrain and moving objects (vehicles, ships or livestock). Rocket Lab notes this continuous data stream “has the potential to revolutionize industries and reshape the future,” unlocking economic insights and predictive analytics for agriculture, urban security and other markets.

Continue Reading

Science

Could dark matter come from a mirror world or the cosmic horizon?

Published

on

By

Could dark matter come from a mirror world or the cosmic horizon?

Now there are two more options available for theoretical physicists mulling over the mystery of what dark matter is, and with them come another two pointers towards how to narrow down our search. UC Santa Cruz Professor of Physics Stefano Profumo published a paper examining whether dark matter was always there or instead could have come from a ‘mirror world’ or the edge of space ballooning along with the rest of the universe. Whatever its truth, it would produce dark matter that does not interact with ordinary particles and significantly modify our modern view of the cosmos.

New Theories Suggest Dark Matter Emerged from a Mirror World or Cosmic Horizon Radiation

As per Physical Review D reports, Profumo’s July study theorises that dark matter could form in a shadow sector that mirrors known particles and forces yet remains completely undetectable. The theory is like quantum chromodynamics (QCD), but the dark sector has new quarks and gluons, and it imagines that heavy “dark baryons” are being held together by gravity. This debris could have collapsed into Planck-mass black hole–type objects that would be undetectable but still able to influence the universe’s structure thanks to gravity.

His earlier May study, published in the same journal, suggests another path: that dark matter particles might have been emitted from the universe’s expanding cosmic horizon. It allows for a brief epoch of formation, thermal synthesis of stable cold dark matter, which decouples from the standard model following inflation, and is consistent with quantum field theory in curved spacetime. That ties in neatly with the radiation from black holes and implies that other universes resembling our own might have started out as invisible seeds of matter.

Profumo stressed that these are speculative-theory-specific hypotheses, based on physics principles already there for dark matter or other gravitational channels or quantum phenomena beyond the standard model.

UC Santa Cruz is leading the way in connecting quantum concepts to astrophysics, developing new models to potentially solve a challenging scientific puzzle.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy S26 Ultra Tipped to Offer Improved Low-Light Camera Performance

Related Stories

Continue Reading

Science

Sun Roars Back with Three M-Class Flares in 24 Hours

Published

on

By

Sun Roars Back with Three M-Class Flares in 24 Hours

After three weeks of calm, the Sun roared back to life on Aug. 3–4, 2025, unleashing three moderate M-class solar flares in just 24 hours. These midday flares – including a 2.9-M flare on Aug. 3 and two more (M2.0 and M1.4) on Aug. 4, all erupted from sunspot region AR 4168. While not as intense as the largest X-class events, M-class flares are still powerful bursts of radiation capable of briefly disturbing Earth’s upper atmosphere. Experts say we may see minor effects, such as short-lived radio blackouts or a brush of auroras at high latitudes.

Solar Eruptions Ignite

According to space weather website SolarHam.com’s post on X, the flares marked a sudden end to a 22-day quiet spell on the Sun. Sunspot AR 4168, a magnetically complex region, rapidly grew active and unleashed the chain of flares. According to Space.com, the M2.9 flare at 10:01 a.m. EDT on Aug. 3 was the first moderate flare since mid-July, and it was followed by M2.0 and M1.4 flares on Aug. 4.
Each flare released intense X-rays and ultraviolet light.

M-class flares are ten times more energetic than the more common C-class flares, although far weaker than the most extreme X-class eruptions. Scientists noted that these eruptions likely hurled two coronal mass ejections (CMEs) into space, which are huge clouds of charged particles that can impact Earth if they arrive.

Potential Earth Effects

Scientists say these eruptions should have only minor impacts on Earth. By NOAA’s space-weather scale, M1–M4 flares correspond to R1–R2 (minor) radio blackouts, so any HF radio outages would be weak and brief. Satellite communications and power grids are expected to be unaffected.
However, the ejected CMEs may still skim past Earth.

EarthSky reports a possible glancing blow around Aug. 5–6, which could trigger a minor G1 geomagnetic storm. That could briefly light up auroras at high latitudes (for example, far-northern Europe or Canada). So far models suggest only a small chance of impact. In other words, NOAA forecasters classify this as a minor event, unlikely to cause disruptions.

Continue Reading

Trending