Connect with us

Published

on

SAE has voted unanimously to form a task force to expedite its NACS standardization process, and thinks that this process could finish by the end of the year – much earlier than we expected. We spoke with the chair of the task force for some insight on what the process might look like.

Tesla released specifications of its charging connector in November 2022. It called it the “North American Charging Standard,” which was somewhat of an absurd name at the time, given that Tesla was the only company using it.

However, Tesla’s argument was that most of the cars and most of the DC charging stations in America already used Tesla’s connector, so it should be considered a de facto standard anyway.

For a few months not many people took this seriously, until Ford shook up the industry by announcing it would adopt the NACS plug on upcoming vehicles. Soon after, GM made the same move, and now basically everyone else has.

So now that we have what looks like a standard, the professional engineering organization which develops industry standards has taken up the flag of creating a real, independent standard that is no longer in the hands of Tesla.

This is an important move because many governments and companies would understandably have an issue with a single company having control over a standard that, at this point, it seems like everyone is planning to use.

NACS standard could come this year, named “J3400”

We talked to Rodney McGee, Ph.D., of the University of Delaware, who is chairing SAE’s NACS task force.

The most important thing he told us is that the SAE Task Force aims to publish its work by the end of this year, only around six months after the start of the standards process. This is significantly faster than we thought it would take to complete the process.

McGee said that SAE is the only standards-setting organization that would be able to publish NACS this quickly, because the timelines for meetings and consensus in the ISO and IEC, two other standards organizations, are much longer due to the complex document processes used by these international organizations.

Another reason for this quicker timeline is because the NACS connector already exists on millions of vehicles, and makes up the majority of the installed base in the US. Since their stations are listed to UL standards and have been proven in the real world, many questions are already answered.

The standard will likely take the official name “J3400,” similar to the name of the current J1772 plug used in SAE CCS chargers. Though it could colloquially be known as J3400, NACS, or even “the Tesla plug,” depending on which name the EV-owning public seizes on.

But McGee told us that this his interest in NACS isn’t just on the DC side of charging, where most of the public’s imagination has focused, but on AC charging where the vast majority of actual charge sessions occur. It turns out that NACS is superior to J1772 for AC charging in one significant way – it can use an input voltage of up to 277 volts, whereas J1772 uses 208-240V.

This not only enables faster AC charging due to higher voltages, but more importantly makes for easier setup on commercial electricity supplies, which is often supplied as 480-volt three-phase power, of which a 277-volt single-phase circuit can be used for charging. This could make public AC charging – in parking garages for apartment buildings or workplaces, for example – cheaper and easier to install since commercial customers won’t need to install their own transformers.

McGee said that Tesla has been very helpful with the process in the last two weeks since SAE proposed making NACS a real standard, and is leaving the future of NACS up to a consensus-based standards process.

This has helped to allay some concerns across the industry, especially in Europe, which was skeptical that NACS could be a protectionist move. Europe has mandated non-proprietary charging connectors before and recently wasn’t happy about EV protectionism in the US Inflation Reduction Act, so this recent groundswell of support for a standard controlled by one American company was met with some skepticism. Having a standards-setting organization in control of the future of NACS makes it much more palatable (and might have led to Mercedes’ announcement to adopt it last week).

Why Plug & Charge is broken and how to fix it

Plug & Charge, a colloquial name for the ISO 15118 standard which allows simple “plug in & walk away” operation of public charging stations, has had a long and difficult implementation process. For years charging station providers have promised it’s just around the corner, but it seems to never materialize.

This is part of why Tesla leads in charging experience satisfaction, because plugging into a Supercharger is a simple process that takes seconds, whereas other chargers might require a subscription, a payment app, swiping a credit card, or at the very least waiting the better part of a minute for authentication to occur before charging initiates.

Besides these user experience issues, McGee pointed out one of the lesser-discussed reasons the standard has been hard to implement in the US, and how the SAE has been working on that problem since before NACS, and sees NACS as a opportunity to further its effort.

Plug & Charge requires a Public Key Infrastructure on the back-end to authenticate vehicles and payments. Public keys are a cryptographic mechanism that allow for secure authentication – one example is website certificates, so your computer can know that it is looking at a legitimate website.

In Europe, this PKI is provided by a company called Hubject, which verifies charging sessions on European public chargers.

But in the US, nobody has coalesced around a single company or organization to provide these certificate services yet. McGee said this is a major obstacle to Plug & Charge in the ISO 15118 standard, first published in 2014, since it is a technical standard did not initially prescribe solutions that were practical for the market.

SAE participants see the wider efforts around the NACS process as an opportunity to solve this problem going forward. Since the industry is shifting to NACS, this disruption could serve as the right time to solve this problem. It is engaging with industry (through SAE-ITC) to create a PKI for NACS which will hopefully solve this problem going forward.

Electrek’s Take

We were surprised to hear that NACS could be certified as a standard by the end of this year.

In the past, standards have taken much longer to develop – in fact, that’s why we even have the Tesla plug in the first place.

When Tesla was building the Model S, there wasn’t a standard that could do both AC and fast DC charging in the same plug. The rest of the industry – and the SAE – was slowly working out the CCS standard, but Tesla couldn’t wait any longer and went its own way, building the Tesla plug and later revealing the Supercharger network.

Now, more than a decade later, that Tesla connector looks likely to become the main charging standard in North America.

So the idea that this could be approved by the end of the year definitely raised our eyebrows, given the history of charging standards implementation and sometimes-long timelines involved.

And we’ve had a lot of questions about Plug & Charge and how long it has taken to implement in the past, so the conversation with McGee was enlightening on that front. It’s good to hear that a solution might finally be around the corner.

But this is a bit of a double-edged sword – while the NACS disruption gives an opportunity to solve the Plug & Charge problem for NACS, increased focus on the new charging standard might mean that nobody bothers to fix it for CCS, as it rapidly becomes considered a “legacy standard” the likes of CHAdeMO.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Toxic Pennsylvania mineland is about to become a big solar farm

Published

on

By

Toxic Pennsylvania mineland is about to become a big solar farm

Rush Township supervisors in Centre County, Pennsylvania, voted this week to greenlight a key permit for the Black Moshannon Solar project – a large solar development that would turn toxic former mineland into a major source of clean power.

If built, the Pennsylvania solar project would generate 265 megawatts of electricity – enough to power about 200,000 homes annually – on nearly 2,000 acres of toxic mineland. Developers deliberately chose the site, as the project is designed to reclaim land left behind by mining and fold environmental cleanup into the solar buildout.

According to project plans, the site would be restored with pollinators and pollinator-friendly ground cover planted beneath the solar panels. Developers have also committed to ongoing water quality and soil testing during construction and operations, along with soil improvements such as applying lime to help neutralize mining-related contamination and support vegetation growth.

Beyond the environmental cleanup, the project is expected to deliver a financial boost to the region. Black Moshannon Solar is projected to generate more than $5 million in tax revenue for the Phillipsburg-Osceola Area School District, along with more than $700,000 in direct tax payments to Centre County.

Advertisement – scroll for more content

Environmental and energy advocates praised the township’s decision. David Masur, executive director of PennEnvironment, called the vote a model for other communities across the state. “We are hopeful that other local government officials across Pennsylvania will follow Rush Township’s lead and implement similar, much-needed solar projects all across the Keystone State.”

Jim Gregory, executive director of the Conservative Energy Network-Pennsylvania, also applauded the approval. “In 40 years, their forward-thinking decisions will be recognized as catalysts for environmental protection, public health improvements, and economic prosperity.”

Read more: Trump admin OKs $1B loan for Three Mile Island nuclear reboot


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Genesis GV90 leaks as breathtaking ultra-luxe SUV with coach doors [Video]

Published

on

By

Genesis GV90 leaks as breathtaking ultra-luxe SUV with coach doors [Video]

Genesis is gearing up to launch the stunning new flagship SUV. Ahead of its official debut, the GV90 leaked during an internal presentation, revealing our first look at the ultra-luxe electric SUV.

Genesis GV90 leak reveals coach doors and more

The GV90 is arriving as the largest, most luxurious Genesis SUV to date. Based on the Neolun Concept, the new flagship SUV will sit above the GV80 as Genesis expands into new segments.

As Genesis calls it, the “ultra-luxe, state-of-the-art SUV” stole the spotlight at the New York Auto Show last March.

It wasn’t the stunning, reductive design inspired by Korea’s moon-shaped porcelain jars or the premium Royal Indigo and Purple silk materials that caught most people’s attention at the event, but the B-pillarless coach doors.

Advertisement – scroll for more content

The SUV was showcased with Rolls-Royce-like coach doors, offering a new level of luxury for Genesis. Although we’ve seen the GV90 spotted out in public testing a few times now with coach doors, we wondered if they would make it to the production model.

Genesis-GV90-leak-coach-doors
The Genesis Neolun electric SUV concept, a preview of the GV90 (Source: Genesis)

After the full-size SUV reportedly leaked during an internal presentation, it looks like we’ve found our answer. The Genesis GV90 leak reveals two versions: a standard model and a coach-door model.

The leaked images from our friends at ShortsCar offer our first look at the production version in full. Earlier this month, a GV90 prototype was spotted out in public with the coach doors wide open, providing a sneak peek of the interior.

From what was shown, the cabin will feature a similar layout to the concept, with high-end purple and indigo materials. The GV90 was also caught with an all-black interior, which is expected to be the standard version.

A new video from the folks over at HealerTV offers a closer look at the breathtaking interior ahead of its official debut.

The GV90 appears to retain the gear selector located near the top of the steering wheel from the Neolun concept.

Another report, from TheKoreanCarBlog, confirms the new gear selector after the first interior spy shots surfaced.

From what we’ve seen so far, the GV90 is shaping up to be a near replica of the ultra-luxe Neolun concept. Genesis has yet to announce a launch date for the GV90, but it is expected to make an official debut by the end of the year with sales starting in mid-2026.

Prices and final specs, like driving range, will be revealed closer to launch, but the Genesis GV90 is rumoured to be the first vehicle to ride on Hyundai’s new eM platform.

Hyundai said the new platform will deliver a 50% improvement in range compared to its current E-GMP-based EVs, such as the IONIQ 5. It’s also expected to offer Level 3 autonomous driving as well as other advanced driver assistance system (ADAS) features.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Battery storage hits $65/MWh – a tipping point for solar

Published

on

By

Battery storage hits /MWh – a tipping point for solar

Turning cheap daytime solar into electricity you can actually use at night just got a lot cheaper. A new analysis from energy think tank Ember shows that utility-scale battery storage costs have fallen to $65 per megawatt-hour (MWh) as of October 2025 in markets outside China and the US. At that level, pairing solar with batteries to deliver power when it’s needed is now economically viable.

Battery storage costs have fallen dramatically over the past two years, and the decline continues. Following a steep decline in 2024, Ember’s analysis indicates that prices continued to fall sharply again in 2025.

The findings are based on real-world data from recent battery and solar-plus-storage auctions in Italy, Saudi Arabia, and India, as well as interviews with active developers across global markets.

According to Ember, the cost of a whole, grid-connected utility-scale battery storage system for long-duration projects (four hours or more) is now about $125 per kilowatt-hour (kWh) as of October 2025. That figure applies to projects outside China and the US. Core battery equipment delivered from China costs around $75/kWh, while installation and grid connection typically add another $50/kWh.

Advertisement – scroll for more content

Those lower upfront costs have pushed down the levelized cost of storage (LCOS) to just $65/MWh. Ember’s calculation reflects real-world assumptions around financing costs, system lifetime, efficiency, and battery degradation.

Cheaper hardware isn’t the only reason storage costs are falling. Longer battery lifetimes, higher efficiencies, and lower financing costs, helped by clearer revenue models such as auctions, have all contributed to the sharp drop in LCOS. Ember has published a live calculator alongside the report, allowing users to estimate LCOS using their own assumptions.

Why this matters comes down to how solar is actually used. Most solar power is generated during the day, so only a portion needs to be stored to make it dispatchable. Ember estimates that if half of daytime solar generation is shifted to nighttime, the $65/MWh storage cost adds about $33/MWh to the cost of solar electricity.

With the global average price of solar at $43/MWh in 2024, adding storage would bring the total cost to about $76/MWh, delivering power in a way that better matches real demand.

As Ember global electricity analyst Kostantsa Rangelova put it, after a 40% drop in battery equipment costs in 2024, the industry is now on track for another major fall in 2025. The economics of battery storage, she said, are “unrecognizable,” and the industry is still adjusting to this new reality.

“Solar is no longer just cheap daytime electricity; now it’s anytime dispatchable electricity. This is a game-changer for countries with fast-growing demand and strong solar resources,” Rangelova added.

Together, solar and battery storage are increasingly emerging as a scalable, secure, and affordable foundation for future power systems.

Read more: EIA: Solar + storage soar as fossil fuels stall through September 2025


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending