Connect with us

Published

on

NASA on Wednesday released an image obtained by the James Webb Space Telescope of the Rho Ophiuchi cloud complex, the closest star-forming region to Earth, as the U.S. space agency marked one year since it unveiled the telescope’s first scientific results.

The Webb telescope, which was launched in 2021 and began collecting data last year, has reshaped the understanding of the early universe while taking stunning pictures of the cosmos.

The Rho Ophiuchi image was an example of that, showing a nebula – a humongous cloud of interstellar gas and dust that serves as a nursery for new stars – located in our Milky Way galaxy roughly 390 light years from Earth. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

Rho Ophiuchi is only about a million years old, a blink of an eye in cosmic time.

“Here, we see how new suns are forming, along with planet-forming disks appearing as small dark silhouettes. These are very similar to what we think the solar system looked like more than 4.5 billion years ago,” said astronomer and former Webb project scientist Klaus Pontoppidan, who is now a research scientist at NASA’s Jet Propulsion Laboratory.

“As the stars and planetary systems assemble, they blow apart the dusty cocoon from which they formed in violent outbursts, as seen in red jets ploughing through the cloud as a boat in the water. The Rho Ophiuchi core is completely obscured by huge amounts of dust, so it is essentially invisible to telescopes working in visible light, like the Hubble telescope. Yet, Webb peers through the dust to reveal the young stars within, showing the very first stages in the life of every star,” Pontoppidan added.

The image, obtained in March and April of this year, shows how the jets of material emanating from young stars affect the surrounding gas and dust while lighting up molecular hydrogen. In one part of the image, a star is seen inside a glowing cave that its stellar winds carve out in space.

“You see an almost impressionistic nebula crowned by three bright young stars on the top. We were surprised by the size and detail of the jets and outflows,” Pontoppidan said.

Since becoming operational, Webb has revealed the existence of the earliest-known galaxies and black holes. It has observed large and mature but remarkably compact galaxies teeming with stars that had formed within a few hundred million years of the Big Bang event that marked the beginning of the universe about 13.8 billion years ago – far sooner than scientists had considered possible.

“Some would say there are few parts of astrophysics that have not been touched by Webb in one way or another. Prominent results include the discovery of new galaxies and black holes in the early universe and new views into exoplanetary atmospheres. The Rho Ophiuchi images shows how Webb gives us a new window into the formation of stars and planets,” Pontoppidan said.

The orbiting observatory was designed to be far more sensitive than its Hubble Space Telescope predecessor. Webb looks at the universe mainly in the infrared, while Hubble has examined it primarily at optical and ultraviolet wavelengths. Webb is able to look at greater distances and thus farther back into time than Hubble.

“In just one year, the James Webb Space Telescope has transformed humanity’s view of the cosmos, peering into dust clouds and seeing light from faraway corners of the universe for the very first time,” NASA Administrator Bill Nelson said in a statement. “Every new image is a new discovery, empowering scientists around the globe to ask and answer questions they once could never dream of.”

© Thomson Reuters 2023


(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Rocket Lab Launches Kushinada-I: A Leap Forward for Japan’s SAR Network

Published

on

By

Rocket Lab Launches Kushinada-I: A Leap Forward for Japan’s SAR Network

In early August 2025, Rocket Lab successfully launched QPS-SAR-12 (nicknamed Kushinada-I), a synthetic-aperture radar (SAR) satellite built by Japan’s iQPS (Institute for Q-shu Pioneers of Space). This mission, called “The Harvest Goddess Thrives” in honor of a Japanese goddess of harvest and prosperity, was Rocket Lab’s fifth dedicated launch for iQPS. The 59-foot (18-meter) Electron rocket lifted the satellite into a 575-km circular orbit. QPS-SAR-12 will join an expanding constellation of SAR Earth-imaging satellites, enabling all-weather, day-and-night observation. The launch exemplifies Rocket Lab’s niche role in deploying small dedicated satellites and advances iQPS’s goal of a 36-satellite global SAR network.

The “Harvest Goddess Thrives” Mission

According to Rocket Lab’s press release, the Electron rocket lifts off on Aug. 5, 2025, from Mahia, New Zealand. The mission, nicknamed “Harvest Goddess Thrives,” carried the QPS-SAR-12 radar satellite (Kushinada-I) for iQPS. The 18-meter vehicle powered away at 12:10 a.m. EDT (4:10 p.m. NZT).The Electron injected Kushinada-I into a planned 575-km sun-synchronous orbit about 54 minutes after liftoff.

Kushinada-I honors a Shinto harvest goddess and is formally designated QPS-SAR-12. This was Rocket Lab’s fifth mission for iQPS and the 69th Electron flight overall. Rocket Lab is also developing a larger Neutron rocket and operates a suborbital test vehicle (HASTE) for hypersonic research.

iQPS SAR Constellation and Applications

By mid-2025, ten QPS-SAR satellites were in orbit, and Kushinada-I became the 12th launched. iQPS plans a total of 36 small SAR spacecraft. Each satellite carries high-resolution SAR capable of imaging through clouds or at night. The full constellation is designed to revisit any target region roughly every 10 minutes, providing near-real-time monitoring.

The SAR network will image both fixed terrain and moving objects (vehicles, ships or livestock). Rocket Lab notes this continuous data stream “has the potential to revolutionize industries and reshape the future,” unlocking economic insights and predictive analytics for agriculture, urban security and other markets.

Continue Reading

Science

Could dark matter come from a mirror world or the cosmic horizon?

Published

on

By

Could dark matter come from a mirror world or the cosmic horizon?

Now there are two more options available for theoretical physicists mulling over the mystery of what dark matter is, and with them come another two pointers towards how to narrow down our search. UC Santa Cruz Professor of Physics Stefano Profumo published a paper examining whether dark matter was always there or instead could have come from a ‘mirror world’ or the edge of space ballooning along with the rest of the universe. Whatever its truth, it would produce dark matter that does not interact with ordinary particles and significantly modify our modern view of the cosmos.

New Theories Suggest Dark Matter Emerged from a Mirror World or Cosmic Horizon Radiation

As per Physical Review D reports, Profumo’s July study theorises that dark matter could form in a shadow sector that mirrors known particles and forces yet remains completely undetectable. The theory is like quantum chromodynamics (QCD), but the dark sector has new quarks and gluons, and it imagines that heavy “dark baryons” are being held together by gravity. This debris could have collapsed into Planck-mass black hole–type objects that would be undetectable but still able to influence the universe’s structure thanks to gravity.

His earlier May study, published in the same journal, suggests another path: that dark matter particles might have been emitted from the universe’s expanding cosmic horizon. It allows for a brief epoch of formation, thermal synthesis of stable cold dark matter, which decouples from the standard model following inflation, and is consistent with quantum field theory in curved spacetime. That ties in neatly with the radiation from black holes and implies that other universes resembling our own might have started out as invisible seeds of matter.

Profumo stressed that these are speculative-theory-specific hypotheses, based on physics principles already there for dark matter or other gravitational channels or quantum phenomena beyond the standard model.

UC Santa Cruz is leading the way in connecting quantum concepts to astrophysics, developing new models to potentially solve a challenging scientific puzzle.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy S26 Ultra Tipped to Offer Improved Low-Light Camera Performance

Related Stories

Continue Reading

Science

Sun Roars Back with Three M-Class Flares in 24 Hours

Published

on

By

Sun Roars Back with Three M-Class Flares in 24 Hours

After three weeks of calm, the Sun roared back to life on Aug. 3–4, 2025, unleashing three moderate M-class solar flares in just 24 hours. These midday flares – including a 2.9-M flare on Aug. 3 and two more (M2.0 and M1.4) on Aug. 4, all erupted from sunspot region AR 4168. While not as intense as the largest X-class events, M-class flares are still powerful bursts of radiation capable of briefly disturbing Earth’s upper atmosphere. Experts say we may see minor effects, such as short-lived radio blackouts or a brush of auroras at high latitudes.

Solar Eruptions Ignite

According to space weather website SolarHam.com’s post on X, the flares marked a sudden end to a 22-day quiet spell on the Sun. Sunspot AR 4168, a magnetically complex region, rapidly grew active and unleashed the chain of flares. According to Space.com, the M2.9 flare at 10:01 a.m. EDT on Aug. 3 was the first moderate flare since mid-July, and it was followed by M2.0 and M1.4 flares on Aug. 4.
Each flare released intense X-rays and ultraviolet light.

M-class flares are ten times more energetic than the more common C-class flares, although far weaker than the most extreme X-class eruptions. Scientists noted that these eruptions likely hurled two coronal mass ejections (CMEs) into space, which are huge clouds of charged particles that can impact Earth if they arrive.

Potential Earth Effects

Scientists say these eruptions should have only minor impacts on Earth. By NOAA’s space-weather scale, M1–M4 flares correspond to R1–R2 (minor) radio blackouts, so any HF radio outages would be weak and brief. Satellite communications and power grids are expected to be unaffected.
However, the ejected CMEs may still skim past Earth.

EarthSky reports a possible glancing blow around Aug. 5–6, which could trigger a minor G1 geomagnetic storm. That could briefly light up auroras at high latitudes (for example, far-northern Europe or Canada). So far models suggest only a small chance of impact. In other words, NOAA forecasters classify this as a minor event, unlikely to cause disruptions.

Continue Reading

Trending