Connect with us

Published

on

Chandrayaan-3, ISRO‘s third lunar mission, is all set to take off on July 14 from Satish Dhawan Space Centre in Sriharikota in Andhra Pradesh. The launch of Chandrayaan-3 is scheduled to take place at 2:35 pm IST with a hope for its success and soft-landing on the surface of the moon. The lunar mission will land on the southern pole of the moon around August 23 or 24. The entire mission is expected to last for one lunar night, which is equivalent to 14 days on Earth.

The ISRO chief invited the entire nation to witness the live launch of Chandrayaan-3 as India embarks on its third lunar mission. To watch the Chandrayaan-3 live launch event, ISRO opened a window for registration on isro.gov.in. While the window is closed now, viewers can still watch the live streaming of Chandrayaan-3 mission launch through ISRO’s official website and YouTube channel.

When will Chandrayaan-3 lunar mission be launched?

The Chandrayaan-3 lunar mission will be launched on July 14 at 2.35 pm IST.

From where will Chandrayaan-3 lunar mission be launched?

The Chandrayaan-3 mission will launch from Satish Dhawan Space Centre, Sriharikota in Andhra Pradesh.

How to watch the live streaming of Chandrayaan-3 launch event?

To watch the Chandrayaan-3 launch live streaming, one can head to ISRO’s YouTube channel. You can also watch the live streaming on the following embedded video:

It is to be noted that Chandrayaan-3 will be India’s third lunar mission. The ISRO’s second lunar mission Chandrayaan-2 failed while attempting to land in 2019. However, to avoid the past failures, ISRO has corporate a series of changes in the upcoming mission.

The Chandrayaan-3 will have three major components — a lander, a rover and a propulsion model. It will be using the Orbiter from Chandrayaan-2 which still exists in the lunar atmosphere. The upcoming mission aims to achieve some scientific measurements on the surface of moon.


From the Nothing Phone 2 to the Motorola Razr 40 Ultra, several new smartphones are expected to make their debut in July. We discuss all of the most exciting smartphones coming this month and more on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s TRACERS Satellites Begin Solar Wind Study Despite SV1 Glitch

Published

on

By

NASA's TRACERS Satellites Begin Solar Wind Study Despite SV1 Glitch

NASA’s TRACERS mission twin satellites were launched on July 23, 2025, to study how solar activity causes magnetic reconnection in Earth’s atmosphere. After launch, a power subsystem anomaly had affected one of the satellites (Space Vehicle 1, SV1) on July 25, causing periodic communication loss. NASA said satellite 2 (Space Vehicle 2, SV2) is “healthy,” and transition is beginning to the instrument commissioning phase. The idea behind TRACERS was to develop a complete toolkit that would allow us, for the first time, to observe all of these complex solar wind connection processes at once. NASA engineers are actively working to recover SV1. Single vector views (SV2) spacecraft are completing a healthy checkout and readying themselves for their science mission.

Recovery Efforts for SV1 Satellite

According to NASA, controllers detected a problem with SV1’s power subsystem in late July that led to intermittent contacts and a loss of communication. Data suggest SV1 can only remain active when its solar panels receive sufficient sunlight. Because of the spacecraft’s current orientation, engineers plan to wait until later in August — when SV1’s panels will receive more sun — to reestablish contact and continue recovery steps.

Meanwhile, mission teams are reviewing onboard data to diagnose the issue and plan next steps. Any time contact is regained, the team will assess SV1’s status and check for impacts on the mission’s science goals. For now, no significant updates on SV1 are expected for several weeks.

SV2 Operational Status

The mission’s other satellite, SV2, is in good health and fully operational. Mission teams have been testing SV2’s onboard instruments and systems through a standard commissioning process. This checkout is proceeding as expected, with NASA anticipating that commissioning will finish by the end of August.

Once SV2 is fully checked out, it will begin coordinated science operations with its twin to study magnetic reconnection – the process that shapes how solar activity affects Earth’s magnetic environment. For now, SV2 continues its planned tests and will soon be ready to collect valuable science data as part of the TRACERS mission.

Continue Reading

Science

Scientists Explore Role of Space Radiation in Powering Alien Microbial Life

Published

on

By

Scientists Explore Role of Space Radiation in Powering Alien Microbial Life

The search for alien life traditionally focuses on planets in the “Goldilocks zone” — the orbital band where surface water can exist. But new research suggests life might thrive far from starlight in a so-called “radiolytic habitable zone,” where penetrating cosmic rays break buried water molecules (a process called radiolysis) into hydrogen, oxygen and energy-rich electrons. Simulations of icy worlds like Mars, Europa and Saturn’s moon Enceladus show cosmic rays can reach subsurface water. Researchers suggest these electrons could fuel microbes in hidden reservoirs, effectively creating underground oases of life.

Radiation as a Power Source

According to the new study, cosmic rays are fast-moving particles (electrons, protons or nuclei) blasted out by supernovas and distant stars. On Earth, most are stopped by our magnetic field and thick atmosphere. But Mars and the icy moons (which lack such shields) get hit directly; their thin air or vacuum allows rays to penetrate deep into ice and rock. When these particles strike water or ice, they trigger radiolysis – shattering molecules and freeing hydrogen, oxygen and electrons. Some Earth microbes already exploit this: for example, a bacterium 2.8 km underground in a gold mine lives entirely on hydrogen produced by radioactive decay.

Expanding the Search for Life

Dubbed the “Radiolytic Habitable Zone,” this hidden-energy band lies beneath ice or rock where cosmic rays can sustain life. Simulations show Saturn’s icy moon Enceladus has the highest radiolytic potential, followed by Mars and then Jupiter’s moon Europa. NASA’s upcoming Europa Clipper mission and telescopes like ALMA will probe these frozen worlds for chemical signs of life. Even more intriguingly, cosmic-ray impacts can directly create complex organic molecules (for example, amino-acid precursors) in ice. Because cosmic rays pervade the galaxy, even a rogue planet adrift in space would be bathed in intense radiation.

As Dimitra Atri, an astrophysicist and co-author of the new study puts it, “life might be able to survive in more places than we ever imagined”, suggesting hidden biospheres could exist in many cold, dark niches.

Continue Reading

Science

Massive Russia Earthquake Triggers Rare ‘Parade’ of 7 Kamchatka Volcanoes

Published

on

By

Massive Russia Earthquake Triggers Rare 'Parade' of 7 Kamchatka Volcanoes

In late July 2025, a magnitude 8.8 earthquake struck off Russia’s Kamchatka Peninsula, triggering a rare series of volcanic eruptions. Scientists report that within days six or seven of the region’s volcanoes erupted in succession—an occurrence not seen in nearly 300 years. Experts described the event as an “extremely rare phenomenon” or “parade of volcanic eruptions”. These volcanoes lie along the Pacific “Ring of Fire,” a zone known for frequent seismic and volcanic activity. The area is sparsely populated, so the immediate risk to local communities is low, although ash plumes could disrupt air travel. Experts are monitoring the situation.

Confirmed Eruptions in Kamchatka

According to the Far Eastern Branch of the Russian Academy of Sciences’ Institute of Volcanology and Seismology, the 8.8-magnitude quake set off eruptions in seven Kamchatka volcanoes. The agency noted this was the first time in nearly 300 years that so many had erupted simultaneously, and its director Alexey Ozerov called it a rare “parade of volcanic eruptions”.

Active vents include major peaks such as Russia’s Klyuchevskaya Sopka, Shiveluch, Bezymianny, Karymsky and Avachinsky. Notably, Krasheninnikov — dormant for about 500 years — erupted after the quake, and heat anomalies at Mutnovsky hint at a possible seventh eruption. The Kamchatka Volcanic Eruption Response Team also reported ash plumes from Klyuchevskoy Volcano. The peninsula hosts about 29 active volcanoes.

Scientific Perspective on Cause

Geophysicist Paul Segall noted that large subduction-zone quakes can trigger eruptions – for example, the 1960 Chile quake was followed by multiple volcanoes erupting. He said such quakes alter crustal stresses, making magma easier to reach the surface. Segall cautioned that it is “still too soon to characterize” the recent events. Kamchatka is normally very active: 40–50 volcanoes erupt worldwide at any time, and Kamchatka has 29 active volcanoes. Klyuchevskoy had been restless before the quake, and the event likely “increased the vigor” of its eruption.

Harold Tobin told Live Science in an email that even the first Krasheninnikov eruption in centuries may be “a very strong coincidence” or triggered by the quake’s seismic waves.

Continue Reading

Trending