Connect with us

Published

on

The head of the US agency responsible for animal welfare has told lawmakers that it did not find any violations of animal research rules at Elon Musk’s Neuralink beyond a 2019 incident the brain implant company had already reported.

Officials with the Department of Agriculture (USDA) conducted a “focused” inspection in response to a complaint about the company’s handling of animal experiments, but identified no compliance breaches, the agency’s secretary Thomas Vilsack wrote to Congressman Earl Blumenauer in a July 14 letter reviewed by Reuters.

The inspection included visits at Neuralink’s two facilities in January 2023, Vilsack wrote, adding that there would be more inspections.

Musk has expressed grand ambitions for his brain-implant startup, saying its chip would allow healthy and disabled people alike to pop into neighbourhood facilities for speedy surgical insertions of devices to treat obesity, autism, depression and schizophrenia. He even sees them being used for web-surfing and telepathy.

Neuralink is preparing to test its brain implant device on humans.

Vilsack said in his letter his agency did not include in its inspection citations an “adverse surgical event” at Neuralink that occurred in August 2019. The company proactively reported it and took corrective action, which complied with the policy at the time, Vilsack added. The USDA changed its rules in 2021 so that self-reporting a violation no longer avoids a citation.

In the 2019 incident, a Neuralink surgeon used a sealant to close holes drilled into a monkey’s skull that had not been approved by the animal research oversight panel, according to emails and public records obtained by the Physicians Committee of Responsible Medicine (PCRM), an animal-welfare advocacy group.

The complaint that triggered the latest inspection was made in February 2022 by PCRM against Neuralink and the University of California, Davis, which was collaborating with the company at the time. It alleged the company carried out deadly experiments on 23 monkeys between 2017 and 2020. Neuralink ended its collaboration with UC Davis in 2020.

Since then, the USDA’s Office of the Inspector General (OIG), at the request of a federal prosecutor, has been investigating potential animal-welfare violations amid internal Neuralink employee complaints that its animal testing experiments were being rushed, causing needless suffering and deaths, Reuters has reported.

Through interviews and internal documents spanning several years, Reuters identified four experiments involving 86 pigs and two monkeys that were marred by human errors. The mistakes weakened the experiments’ research value and required the tests to be repeated, leading to more animals being killed.

Vilsack offered no update on the progress of the OIG probe. “Should (the OIG) investigate the Neuralink facility and find that USDA should take additional actions, we will fully cooperate to take those actions,” he wrote.

Neuralink and OIG representatives did not respond to requests for comment.

Blumenauer responded by calling for greater urgency in the probe. “I urge the Office of the Inspector General to quickly conclude their investigation and make public their findings,” he said in a statement.

Ryan Merkley, PCRM’s director of research advocacy, said the USDA was giving Neuralink “a free pass”.

Oversight board

US lawmakers had also raised concerns to the USDA about potential conflicts of interest at an animal-research oversight board after Reuters reported it was filled with company insiders who may stand to benefit financially as the firm made progress with its goals.

Vilsack wrote that the law required the oversight board include an attending veterinarian and an individual unaffiliated with the research facility or its employees to provide an unbiased observer – a threshold that Neuralink formally meets. He said the agency’s inspectors generally review such records and protocols, “which should surface any conflicts of interest.”

The Food and Drug Administration (FDA) recently granted a company request to begin testing its brain implant device in humans. It initially rejected Neuralink’s request for a human trial last year, citing safety reasons, Reuters has reported.

Even after FDA clearance, the company faces other challenges. The Department of Transportation is probing whether Neuralink illegally transported dangerous pathogens on chips removed from monkey brains without proper containment.

© Thomson Reuters 2023


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Hubble Space Telescope Helps Confirm the First Solitary Black Hole

Published

on

By

NASA Hubble Space Telescope Helps Confirm the First Solitary Black Hole

For the first time, the existence of a lone black hole has been confirmed by scientists. This black hole has no star orbiting it. According to the statement by Kailash Sahu, astronomer at the Space Telescope Science Institute in Baltimore, “it’s the only one so far”. The discovery made headlines in the year 2022, when Sahu and his Team claimed a dark object was moving through the constellation Sagittarius. However, another team of researchers disputed the claims by identifying the object as a neutron star.

About the Discovery

This discovery came into the light three years ago. All the stellar-mass black holes are accompanied by stars that betray their presence and race around an invisible star, along with three times the sun’s mass. Such a procedure indicates the presence of black holes rather than a neutron star.

On the contrary, the solitary black holes are expected to be common, but are very hard to find. Likewise, the one in Sagittarius was identified while passing through the dim background star and additionally shifting its position due to the black hole’s gravity. Recently, Sahu’s efforts were reported in the Astrophysical Journal, about the new observations from NASA’s Hubble Space Telescope, confirming the presence of a lone black hole in Sagittarious.

Black Hole Key Findings

Although the passage occurred first in the year 2011, the original discovery relied on the Hubble measurements from the year 2011 to 2017. However, the new data has been gained from the Hubble observations from the year 2021 to 2022, accompanied by the data received from the Gaia Spacecraft.

How Big is a Black Hole?

The ideal size of this lone black home is seven times as huge as the sun. In recent observations, a different team of scientists revisited the project and identified the size as massive as six times that of the sun. The theories of the scientists match with that of Sahu’s observation.

The research continues for detecting the black holes in Sagittarius. Located at a distance of 5,000 light years away from Earth, this solitary black hole is yet to be observed from different aspects. The astronomer, Sahu, hopes to find more lone black holes with the effective use of the Nancy Grace Roman Space Telescope, which is set to launch in the year 2027.

Continue Reading

Science

Mars’ Carbonate Mystery and Ancient Atmosphere Deciphered

Published

on

By

Mars’ Carbonate Mystery and Ancient Atmosphere Deciphered

The evolution of Mars and its ancient atmosphere has been a prominent research topic for scientists. NASA’s Curiosity Mars rover could potentially be the ultimate solution for the temperature and other details about the planet. As per the assumptions made by the researchers, Mars’s atmosphere was crafted with a thick layer of carbon dioxide whereas the surface comprised liquid water. Likewise, the presence of carbonate minerals on the planet would be the result of a potential reaction between water, carbon dioxide, and Martian rocks, researchers say.

Presence of Siderite Detected

Recently reported in the April paper of Science, the presence of siderite has been discovered within the sulfate-rich rocky layers of Mount Sharp on Mars. The discovery was made at three of Curiosity’s drill sites.

According to the lead author and Associate Professor at the University of Calgary, Canada, Benjamin Tutolo, “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars”.

About the Drilling Process

To achieve an understanding of the chemical and mineral makeup at the surface of Mars, Curiosity drills three to four centimeters down into the subsurface. Further, the powdered rock samples are then dropped into the CheMin instrument. This instrument analyses the rocks and soil via X-ray diffraction. The CheMin instrument is driven by NASA’s Ames Research Centre in California’s Silicon Valley.

The data analysis of the discovery was conducted by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA Johnson Space Center in Houston.

Potential Findings and Atmosphere at Mars

The discovery of this carbonate mineral could potentially be hiding other minerals beneath the surface, in near-infrared satellite analysis. The possible presence of carbonates in sulfate-rich layers across Mars may result in the amount of carbon dioxide, which will be ideal to support the liquid water and create conditions warm enough to sustain water. Also, the scientists doubt the existence of other carbonates, or maybe they might have vanished from space.

To Conclude

The missions and analyses are still undergoing, and they will continue the research in the future. The findings can be confirmed post-research on the sulfate-rice area on the red planet. As the findings arrive, they will help us understand the transformation of the planet and will offer clarity on the ancient atmosphere.

Note: Curiosity is a part of NASA’s Mars Exploration Program (MEP) portfolio. It was built by NASA’s Jet Propulsion Laboratory, managed by Caltech in Pasadena, California. The mission is successfully led by JPL on behalf of NASA’s Science Mission Directorate in Washington.

Continue Reading

Science

JWST Might Have Revealed New Signs of Alien Life on Nearby Exoplanet

Published

on

By

JWST Might Have Revealed New Signs of Alien Life on Nearby Exoplanet

Scientists discovered suitable biosignature gases for alien life on planet K2-18b. On K2-18b, NASA’s James Webb Space Telescope (JWST) noticed dimethyl sulfide (DMS), a chemical primarily produced by living creatures on Earth. Notably, the exoplanet is nine times the size of our planet and exists in the habitable zone of its planetary system. As exoplanets pass in front of their home stars, the team probes planetary atmospheres using JWST’s Mid-Infrared Instrument (MIRI). Based on its size and other properties, astronomers think K2-18b is a “Hycean” world—that is, one with a large liquid-water ocean and a hydrogen-rich atmosphere.

Although the researchers estimate concentrations of more than 10 parts per million by volume on Earth, they are less than one part per billion. However, further research is required to confirm and expand on their findings.

NASA’s Webb Telescope Finds Possible Life Signs on Exoplanet K2-18b

According to a new study, which was published in The Astrophysical Journal Letters, chemical proof of life on the far-off exoplanet K2-18b has come from NASA’s James Webb Space Telescope. Rare on other planets or moons, these signals, which point to the presence of dimethyl sulfide and dimethyl disulfide, are found in marine plants and bacteria on Earth.

Because K2-18b boasts a hydrogen-rich atmosphere and a planet-wide ocean, researchers classify it as a “hycean world.” Methane and carbon dioxide, found in the planet’s atmosphere in 2023, were the first carbon-based compounds found in the habitable zone of an exoplanet. Though the levels had minimal statistical significance, the researchers also found likely DMS signals, therefore confounding DMS diagnosis. The results underline the possibilities of life on exoplanets.

JWST Data Hints at High Sulfur Levels on Exoplanet, Life or Not

MIRI observations from the JWST expose features in planetary atmospheres that point to DMS or DMDS helping to explain them. Scientists estimate that atmospheric DMS and DMDS levels could be substantially greater than on Earth, that is, above 10 parts per million. Differentiating DMS from DMDS requires more data. Scientists want to investigate undiscovered chemical processes involving no living entities able to generate DMS and DMDS from nothing.

Continue Reading

Trending