Connect with us

Published

on

Early this morning, the Fremantle Highway, a large cargo ship, caught fire in the North Sea, off the coast of Ameland in the Netherlands. The fire has killed one person on board and injured several more, though all 23 crew members have at this point been evacuated from the ship.

The cargo ship was carrying 2,832 gas-powered cars, complete with a large amount of volatile energy stored in their gas tanks, and 25 electric ones, from Germany to Egypt. Naturally, the media seems to have taken one statement from the Dutch Coast Guard and misinterpreted it, jumping to exactly the premature conclusion that you probably did when you saw this headline pop up on our site.

An early article about the cargo ship fire quoted Lea Versteeg, a spokesperson for the Dutch Coast Guard, as having made this statement over the phone:

It’s carrying cars, 2,857, of which 25 are electrical cars, which made the fire even more difficult. It’s not easy to keep that kind of fire under control and even in such a vessel it’s not easy.

We’re not sure who made the phone call, but since it’s in the Associated Press article, we suspect they might be the first who got this statement directly from Versteeg’s mouth.

NOS, the Dutch public broadcaster, cites a “Coast Guard spokesperson” as saying that presumably the fire was started by an EV. But unlike AP, NOS does not name the spokesperson nor does it have a direct quote from said spokesperson. So we really don’t know whether NOS talked to a spokesperson, or is cribbing from the Versteeg quote above – and changing its meaning in the process.

Reuters echoed NOS’s statement in its original article on the fire, but in a more recent article, it has now walked that back, stating “the coastguard said on its website that the cause of the fire was unknown, but a coastguard spokesperson had earlier told Reuters it began near an electric car” (emphasis ours).

But what the Versteeg quote above seems to mean is that in a ship full of vehicles, each of which is carrying their own at least partially full energy storage container (whether that be a gas tank or a battery), it’s going to be hard to put out a fire because there is a lot of fuel available for that fire. Further, given that there is a mix of fuels, it’s hard to pick a single tactic to put all of them out at once, because firefighting methods are different for different types of fires.

What the quote clearly doesn’t mean is that the Coast Guard is blaming this fire on an electric car.

And how do we know that? Well, we called them and asked them. And they told us that, no, they have not made a statement to that effect, because they don’t know the cause of the fire yet, and that this seems to be speculation in the media.

We also checked the Dutch Coast Guard’s liveblog about the firefighting efforts, and their Twitter page, and neither said anything about electric cars. In fact, the liveblog has now been updated to say, “The cause of the fire is still unknown.” And it makes sense that the Coast Guard would not know yet what the source of the fire is, and it would be unprofessional of them to say so, given that the fire isn’t even contained yet.

So we must conclude that this is being misreported. An official statement in writing says the cause is unknown. There is nothing from officials in writing mentioning the speculation about electric cars. We don’t have a direct quote, and we don’t have a name for the spokesman who said it. The misreported information seems like it could have come from a misinterpretation of a direct quote that we do know of, and at least one of the sources has now walked it back. It was confirmed to us over the phone that the Coast Guard has not come to this conclusion and that this is all media speculation.

One thing we do know is that cargo ship fires are not uncommon, with hundreds happening last year. We also know that another cargo ship carrying ~1,200 gas cars (and zero electric) caught fire earlier this month in New Jersey, killing two. And we know that gasoline is literally supposed to combust, that’s its entire purpose, and it does, commonly, since gas cars are several times more likely to catch fire than EVs are.

And yet, you probably have a strong association in your subconscious between fires and electric cars.

This association is why events like the aforementioned reporting on the 1,200-car ship had to specifically mention that “there were no electric cars on board.” Because the last time a ship made headlines for burning, it was one that had a lot of electric cars on board (and notably also several gas-powered Lamborghini Aventadors, which have been recalled for fires). And despite burning ships being a not-uncommon event, this one made so many headlines precisely because of the nature of the electric cars on board.

That event also had several early reports laying blame on said electric cars, but that was also early speculation, by media, never by official authorities, and the cause of that fire is still unclear to this day. But the association remains.

There is a concept in journalism that is summarized as “Man Bites Dog.” The saying goes that you would never report on a dog biting a man, because that’s a common occurrence, but if a man bites a dog, well, that’s interesting and rare, so that belongs in the paper.

What this means is that news tends to magnify rare events, and de-emphasize common ones. And in our media-saturated landscape, where everyone is constantly being bombarded by headlines that they don’t have the time or inclination to analyze (thank you to the ~.1% of people who saw the headline and actually clicked and read through to this sentence), this leads people to have a warped view of the commonality of certain events.

Unfortunately, in writing this article, we have become part of the problem. By posting about fires in an electric vehicle publication, we have created an association in the minds of anyone who sees this headline between electric cars and fires.

Which is why persistent associations like these are so hard to shake. Even the debunking itself can reinforce the association, through a concept known as the “backfire effect.”

Unfortunately, there is no single magic bullet to combat this. What we can do is encourage people to be critical but not cynical about the information you read, check several sources (that preferably do not look like they’re all cribbing from the same single statement), try to avoid sources that are clearly tabloids or have a clear ideological bias (e.g., Daily Mail, a climate denying publication, which wrongly put EVs in its headline on this story), and try to maintain perspective, especially when encountering purported problems with new technologies. (That is, if people bring up a problem with something new, does that problem also exist with the old thing it’s replacing? Have you merely accepted the devil you know, and are afraid of the devil you don’t know?)

And that goes double for journalists. This is your job, that phone call took all of a minute of my time to clear that up. The tweet was another couple minutes to find because I had to search in Dutch. The liveblog was a few minutes because it’s slammed with more traffic than the Dutch Coast Guard usually has to deal with.

None of this took longer than the amount of time it takes to write an article… but it did take longer than it takes to react with a 140-character quip via tweet. And thus, the lie travels halfway around the world while truth is still putting on its shoes.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

In rare earth metals power struggle with China, old laptops, phones may get a new life

Published

on

By

In rare earth metals power struggle with China, old laptops, phones may get a new life

A stack of old mobile phones are seen before recycling process in Kocaeli, Turkiye on October 14, 2024.

Anadolu | Anadolu | Getty Images

As the U.S. and China vie for economic, technological and geopolitical supremacy, the critical elements and metals embedded in technology from consumer to industrial and military markets have become a pawn in the wider conflict. That’s nowhere more so the case than in China’s leverage over the rare earth metals supply chain. This past week, the Department of Defense took a large equity stake in MP Materials, the company running the only rare earths mining operation in the U.S.

But there’s another option to combat the rare earths shortage that goes back to an older idea: recycling. The business has come a long way from collecting cans, bottles, plastic, newspaper and other consumer disposables, otherwise destined for landfills, to recreate all sorts of new products.

Today, next-generation recyclers — a mix of legacy companies and startups — are innovating ways to gather and process the ever-growing mountains of electronic waste, or e-waste, which comprises end-of-life and discarded computers, smartphones, servers, TVs, appliances, medical devices, and other electronics and IT equipment. And they are doing so in a way that is aligned to the newest critical technologies in society. Most recently, spent EV batteries, wind turbines and solar panels are fostering a burgeoning recycling niche.

The e-waste recycling opportunity isn’t limited to rare earth elements. Any electronics that can’t be wholly refurbished and resold, or cannibalized for replacement parts needed to keep existing electronics up and running, can berecycled to strip out gold, silver, copper, nickel, steel, aluminum, lithium, cobalt and other metals vital to manufacturers in various industries. But increasingly, recyclers are extracting rare-earth elements, such as neodymium, praseodymium, terbium and dysprosium, which are critical in making everything from fighter jets to power tools.

“Recycling [of e-waste] hasn’t been taken too seriously until recently” as a meaningful source of supply, said Kunal Sinha, global head of recycling at Swiss-based Glencore, a major miner, producer and marketer of metals and minerals — and, to a much lesser but growing degree, an e-waste recycler. “A lot of people are still sleeping at the wheel and don’t realize how big this can be,” Sinha said. 

Traditionally, U.S. manufacturers purchase essential metals and rare earths from domestic and foreign producers — an inordinate number based in China — that fabricate mined raw materials, or through commodities traders. But with those supply chains now disrupted by unpredictable tariffs, trade policies and geopolitics, the market for recycled e-waste is gaining importance as a way to feed the insatiable electrification of everything.

“The United States imports a lot of electronics, and all of that is coming with gold and aluminum and steel,” said John Mitchell, president and CEO of the Global Electronics Association, an industry trade group. “So there’s a great opportunity to actually have the tariffs be an impetus for greater recycling in this country for goods that we don’t have, but are buying from other countries.”

With copper, other metals, ‘recycling is going to play huge role’

Although recycling contributes only around $200 million to Glencore’s total EBITDA of nearly $14 billion, the strategic attention and time the business gets from leadership “is much more than that percentage,” Sinha said. “We believe that a lot of mining is necessary to get to all the copper, gold and other metals that are needed, but we also recognize that recycling is going to play a huge role,” he said.

Glencore has operated a huge copper smelter in Quebec, Canada, for almost  20 years on a site that’s nearly 100-years-old. The facility processes mostly mined copper concentrates, though 15% of its feedstock is recyclable materials, such as e-waste that Glencore’s global network of 100-plus suppliers collect and sort. The smelter pioneered the process for recovering copper and precious metals from e-waste in the mid 1980s, making it one of the first and largest of its type in the world. The smelted copper is refined into fresh slabs that are sold to manufacturers and traders. The same facility also produces refined gold, silver, platinum and palladium recovered from recycling feeds. 

The importance of copper to OEMs’ supply chains was magnified in early July, when prices hit an all-time high after President Trump said he would impose a 50% tariff on imports of the metal. The U.S. imports just under half of its copper, and the tariff hike — like other new Trump trade policies — is intended to boost domestic production.

Stock Chart IconStock chart icon

hide content

Price of copper year-to-date 2025.

It takes around three decades for a new mine in the U.S. to move from discovery to production, which makes recycled copper look all the more attractive, especially as demand keeps rising. According to estimates by energy-data firm Wood Mackenzie, 45% of demand will be met with recycled copper by 2050, up from about a third today.

Foreign recycling companies have begun investing in the U.S.-based facilities. In 2022, Germany’s Wieland broke ground on a $100-million copper and copper alloy recycling plant in Shelbyville, Kentucky. Last year, another German firm, Aurubis, started construction on an $800-million multi-metal recycling facility in Augusta, Georgia.

“As the first major secondary smelter of its kind in the U.S., Aurubis Richmond will allow us to keep strategically important metals in the economy, making U.S. supply chains more independent,” said Aurubis CEO Toralf Haag.

Massive amounts of e-waste

The proliferation of e-waste can be traced back to the 1990s, when the internet gave birth to the digital economy, spawning exponential growth in electronically enabled products. The trend has been supercharged by the emergence of renewable energy, e-mobility, artificial intelligence and the build-out of data centers. That translates to a constant turnover of devices and equipment, and massive amounts of e-waste.

In 2022, a record 62 million metric tons of e-waste were produced globally, up 82% from 2010, according to the most recent estimates from the United Nations’ International Telecommunications Union and research arm UNITAR. That number is projected to reach 82 million metric tons by 2030.

The U.S., the report said, produced just shy of 8 million tons of e-waste in 2022. Yet only about 15-20% of it is properly recycled, a figure that illustrates the untapped market for e-waste retrievables. The e-waste recycling industry generated $28.1 billion in revenue in 2024, according to IBISWorld, with a projected compound annual growth rate of 8%.

Whether it’s refurbished and resold or recycled for metals and rare-earths, e-waste that stores data — especially smartphones, computers, servers and some medical devices — must be wiped of sensitive information to comply with cybersecurity and environmental regulations. The service, referred to as IT asset disposition (ITAD), is offered by conventional waste and recycling companies, including Waste Management, Republic Services and Clean Harbors, as well as specialists such as Sims Lifecycle Services, Electronic Recyclers International, All Green Electronics Recycling and Full Circle Electronics.

“We’re definitely seeing a bit of an influx of [e-waste] coming into our warehouses,” said Full Circle Electronics CEO Dave Daily, adding, “I think that is due to some early refresh cycles.”

That’s a reference to businesses and consumers choosing to get ahead of the customary three-year time frame for purchasing new electronics, and discarding old stuff, in anticipation of tariff-related price increases.

Daily also is witnessing increased demand among downstream recyclers for e-waste Full Circle Electronics can’t refurbish and sell at wholesale. The company dismantles and separates it into 40 or 50 different types of material, from keyboards and mice to circuit boards, wires and cables. Recyclers harvest those items for metals and rare earths, which continue to go up in price on commodities markets, before reentering the supply chain as core raw materials.

Even before the Trump administration’s efforts to revitalize American manufacturing by reworking trade deals, and recent changes in tax credits key to the industry in Trump’s tax and spending bill, entrepreneurs have been launching e-waste recycling startups and developing technologies to process them for domestic OEMs.

“Many regions of the world have been kind of lazy about processing e-waste, so a lot of it goes offshore,” Sinha said. In response to that imbalance, “There seems to be a trend of nationalizing e-waste, because people suddenly realize that we have the same metals [they’ve] been looking for” from overseas sources, he said. “People have been rethinking the global supply chain, that they’re too long and need to be more localized.” 

China commands 90% of rare earth market

Several startups tend to focus on a particular type of e-waste. Lately, rare earths have garnered tremendous attention, not just because they’re in high demand by U.S. electronics manufacturers but also to lessen dependence on China, which dominates mining, processing and refining of the materials. In the production of rare-earth magnets — used in EVs, drones, consumer electronics, medical devices, wind turbines, military weapons and other products — China commands roughly 90% of the global supply chain.

The lingering U.S.–China trade war has only exacerbated the disparity. In April, China restricted exports of seven rare earths and related magnets in retaliation for U.S. tariffs, a move that forced Ford to shut down factories because of magnet shortages. China, in mid-June, issued temporary six-month licenses to certain major U.S. automaker suppliers and select firms. Exports are flowing again, but with delays and still well below peak levels.

The U.S. is attempting to catch up. Before this past week’s Trump administration deal, the Biden administration awarded $45 million in funding to MP Materials and the nation’s lone rare earths mine, in Mountain Pass, California. Back in April, the Interior Department approved development activities at the Colosseum rare earths project, located within California’s Mojave National Preserve. The project, owned by Australia’s Dateline Resources, will potentially become America’s second rare earth mine after Mountain Pass. 

A wheel loader takes ore to a crusher at the MP Materials rare earth mine in Mountain Pass, California, U.S. January 30, 2020. Picture taken January 30, 2020.

Steve Marcus | Reuters

Meanwhile, several recycling startups are extracting rare earths from e-waste. Illumynt has an advanced process for recovering them from decommissioned hard drives procured from data centers. In April, hard drive manufacturer Western Digital announced a collaboration with Microsoft, Critical Materials Recycling and PedalPoint Recycling to pull rare earths, as well as copper, gold, aluminum and steel, from end-of-life drives.

Canadian-based Cyclic Materials invented a process that recovers rare-earths and other metals from EV motors, wind turbines, MRI machines and data-center e-scrap. The company is investing more than $20 million to build its first U.S.-based facility in Mesa, Arizona. Late last year, Glencore signed a multiyear agreement with Cyclic to provide recycled copper for its smelting and refining operations.

Another hot feedstock for e-waste recyclers is end-of-life lithium-ion batteries, a source of not only lithium but also copper, cobalt, nickel, manganese and aluminum. Those materials are essential for manufacturing new EV batteries, which the Big Three automakers are heavily invested in. Their projects, however, are threatened by possible reductions in the Biden-era 45X production tax credit, featured in the new federal spending bill.

It’s too soon to know how that might impact battery recyclers — including Ascend Elements, American Battery Technology, Cirba Solutions and Redwood Materials — who themselves qualify for the 45X and other tax credits. They might actually be aided by other provisions in the budget bill that benefit a domestic supply chain of critical minerals as a way to undercut China’s dominance of the global market.

Nonetheless, that looming uncertainty should be a warning sign for e-waste recyclers, said Sinha. “Be careful not to build a recycling company on the back of one tax credit,” he said, “because it can be short-lived.”

Investing in recyclers can be precarious, too, Sinha said. While he’s happy to see recycling getting its due as a meaningful source of supply, he cautions people to be careful when investing in this space. Startups may have developed new technologies, but lack good enough business fundamentals. “Don’t invest on the hype,” he said, “but on the fundamentals.”

Glencore, ironically enough, is a case in point. It has invested $327.5 million in convertible notes in battery recycler Li-Cycle to provide feedstock for its smelter. The Toronto-based startup had broken ground on a new facility in Rochester, New York, but ran into financial difficulties and filed for Chapter 15 bankruptcy protection in May, prompting Glencore to submit a “stalking horse” credit bid of at least $40 million for the stalled project and other assets.

Even so, “the current environment will lead to more startups and investments” in e-waste recycling, Sinha said. “We are investing ourselves.”

MP Materials CEO on deal with the Defense Department

Continue Reading

Environment

LiveWire gives surprise unveil of two smaller, lower-cost electric motorcycles

Published

on

By

LiveWire gives surprise unveil of two smaller, lower-cost electric motorcycles

LiveWire, the electric motorcycle company that was spun out of Harley-Davidson several years ago, has just shown off two fun-sized electric motorcycles designed to make powered two-wheelers more accessible to new riders, both physically and financially.

The company took to HD Homecoming, a motorcycle festival in Milwaukee, to give a surprise unveiling of the new bikes.

The bikes, which wear what look to be smaller 12″ tires and offer a barely 30″ (76 cm) seat height, are smaller and nimbler than anything we’ve seen from LiveWire before.

But that doesn’t mean they can’t perform. These aren’t some 30 mph (48 km/h) mopeds. LiveWire confirmed that early testing shows respectable performance figures of around 53 mph (85 km/h) speeds and 100 miles (160 km) of range from the pair of removable batteries.

Advertisement – scroll for more content

I’m assuming that range is measured at a lower urban speed, but these appear to be purpose-built to give riders the capability to ride where and how they want at a much more affordable price than LiveWire has ever offered.

Showing off both a trail and a street version, the LiveWire seems to be covering all of its bases.

“The trail model is intended for riding backyards, pump tracks, or even out on the ranch or campgrounds,” the brand explained. “The street model is perfect for urban errands, new riders, mini-moto fans, and anyone looking for a new hobby in the form of a readily customizable, approachable electric moto experience.”

LiveWire hasn’t shared any pricing details yet, and the two models are understood to still be in their development phase, but the advanced stages of the designs mean we likely won’t have to wait too much longer.

And with most of LiveWire’s current electric motorcycle models in the $16k- $17k, these bikes could conceivably cost less than half of that figure, changing the equation for young riders who can’t afford a luxury ride.

Electrek’s Take

Of course, they had to do this unveiling at the exact time that I was banging out a multi-thousand-word treatise bemoaning the fact that LiveWire hadn’t launched any smaller models yet. Hmmm, maybe it’s time for an article about how the e-bike industry needs a single battery standard.

Anyway, I’m all-in on this! I can’t even describe how excited this news makes me! This is an important step for LiveWire’s growth because the kind of folks who are drawn to electric motorcycles are often a different market than that sought by traditional legacy motorcycle manufacturers. LiveWire’s existing models are impressive, both in their extreme performance and their design, but they’re still powerhouses that provide more kick than most riders probably need.

These new mini e-motos could be exactly what new riders are looking for. Consider all the teens and young adults ripping it up on Sur Rons in towns across the US right now. Those Sur Rons aren’t street-legal bikes and they were never meant for the riding they’re most commonly being used for. But a street bike in a fun little Grom form factor like LiveWire is showing off? It could scratch that itch and also provide riders with the safety and support of a motorcycle company that comes from a storied history of over 100 years of motorcycle design, all from a new brand like LiveWire that speaks young riders’ language.

And that trail version – same thing. It’s going to offer the fun off-road riding that so many are looking for, yet do it in a well-designed package that isn’t just produced by some nameless factory in China trying to eke out the best profit margin.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

This new wireless e-bike charger wants to be the future of electric bikes

Published

on

By

This new wireless e-bike charger wants to be the future of electric bikes

Forget fumbling with cables or hunting for batteries – TILER is making electric bike charging as seamless as parking your ride. The Dutch startup recently introduced its much-anticipated TILER Compact system, a plug-and-play wireless charger engineered to transform the user experience for e-bike riders.

At the heart of the new system is a clever combo: a charging kickstand that mounts directly to almost any e‑bike, and a thin charging mat that you simply park over. Once you drop the kickstand and it lands on the mat, the bike begins charging automatically via inductive transfer – no cable required. According to TILER, a 500 Wh battery will fully charge in about 3.5 hours, delivering comparable performance to traditional wired chargers.

It’s an elegantly simple concept (albeit a bit chunky) with a convenient upside: less clutter, fewer broken cables, and no more need to bend over while feeling around for a dark little hole.

TILER claims its system works with about 75% of existing e‑bike platforms, including those from Bosch, Yamaha, Bafang, and other big bames. The kit uses a modest 150 W wireless power output, which means charging speeds remain practical while keeping the system lightweight (the tile weighs just 2 kg, and it’s also stationary).

Advertisement – scroll for more content

TILER has already deployed over 200 charging points across Western Europe, primarily serving bike-share, delivery, hospitality, and hotel fleets. A recent case study in Munich showed how a cargo-bike operator saved approximately €1,250 per month in labor costs, avoided thousands in spare batteries, and cut battery damage by 20%. The takeaway? Less maintenance, more uptime.

Now shifting to prosumer markets, TILER says the Compact system will hit pre-orders soon, with a €250 price tag (roughly US $290) for the kickstand plus tile bundle. To get in line, a €29 refundable deposit is currently required, though they say it is refundable at any point until you receive your charger. Don’t get too excited just yet though, there’s a bit of a wait. Deliveries are expected in summer 2026, and for now are covering mostly European markets.

The concept isn’t entirely new. We’ve seen the idea pop up before, including in a patent from BMW for charging electric motorcycles. And the efficacy is there. Skeptics may wonder if wireless charging is slower or less efficient, but TILER says no. Its system retains over 85% efficiency, nearly matching wired charging speeds, and even pauses at 80% to protect battery health, then resumes as needed. The tile is even IP67-rated, safe for outdoor use, and about as bulky as a thick magazine.

Electrek’s Take

I love the concept. It makes perfect sense for shared e-bikes, especially since they’re often returning to a dock anyway. As long as people can be trained to park with the kickstand on the tile, it seems like a no-brainer.

And to be honest, I even like the idea for consumers. I know it sounds like a first-world problem, but bending over to plug something in at floor height is pretty annoying, not to mention a great way to throw out your back if you’re not exactly a spring chicken anymore. Having your e-bike start charging simply by parking it in the right place is a really cool feature! I don’t know if it’s $300 cool, but it’s pretty cool!

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending