Connect with us

Published

on

Achieving a major milestone, ISRO on Thursday announced that the Chandrayaan-3 spacecraft’s Lander Module has successfully separated from the Propulsion module that was propelling it all these days in space.

The Lander Module comprising the lander (Vikram) and the rover (Pragyan) is now ready to be lowered into an orbit that takes it closer to the Moon’s surface. The soft landing on the Lunar south pole is scheduled on August 23.

“Thanks for the ride, mate! said the Lander Module (LM). LM is successfully separated from the Propulsion Module (PM). LM is set to descend to a slightly lower orbit upon a deboosting planned for tomorrow around 1600 Hrs., IST,” ISRO said in a post on X (formerly Twitter).

After Thursday’s separation, the lander is expected to undergo a “deboost” (the process of slowing down) to place it in an orbit, where the Perilune (the orbit’s closest point to the Moon) is 30 kilometres and Apolune (farthest point from the Moon) is 100 km, from where the soft landing on the south polar region of the Moon will be attempted, ISRO sources said.

Meanwhile, the Propulsion Module will continue its journey in the current orbit for months/years, the country’s space agency said.

“The SHAPE (Spectro-polarimetry of Habitable Planet Earth) payload onboard it (Propulsion Module) would perform spectroscopic study of the Earth’s atmosphere and measure the variations in polarization from the clouds on Earth – to accumulate signatures of Exoplanets that would qualify for our habitability!” ISRO said, adding that this payload is shaped by its U R Rao Satellite Centre in Bengaluru.

Post its launch on July 14, Chandrayaan-3 entered into the lunar orbit on August 5, following which orbit reduction maneuvers were carried out on the satellite on August 6, 9, 14 and 16, ahead of separation of both its modules today, in the runup to the landing on August 23.

ISRO Chairman S Somanath had recently said the most critical part of the landing is the process of bringing the velocity of the lander from 30 km height to the final landing, and that the ability to transfer the spacecraft from horizontal to vertical direction is the “trick we have to play” here.

“The velocity at the starting of the landing process is almost 1.68 km per second, but this speed is horizontal to the surface of the moon. The Chandrayaan-3 here is tilted almost 90 degrees, it has to become vertical. So, this whole process of turning from horizontal to vertical is a very interesting calculation mathematically. We have done a lot of simulations. It is here where we had the problem last time (Chandrayaan-2),” Somanath explained.

Earlier, over five moves in the three weeks since the July 14 launch, ISRO had lifted the Chandrayaan-3 spacecraft into orbits farther and farther away from the Earth.

Then, on August 1 in a key maneuver — a slingshot move — the spacecraft was sent successfully towards the Moon from Earth’s orbit. Following this trans-lunar injection, the Chandrayaan-3 spacecraft escaped from orbiting the Earth and began following a path that would take it to the vicinity of the moon.

“It is a great moment and this will imply how the lander if performing and the lander will be verified and tested and brought closer and closer to the moon…Then it will be given the required commands such that it takes over on the cue on August 23 to go all the way to the targeted place and have a safe and secure landing,” Chandryaan-1 Project Director M Annadurai told PTI.

“This is the beginning and all further milestones have to be seen very carefully. We have crossed major milestones from the launch vehicle and after that the propulsion system (separation) Now really the match starts. These are the final overs we are talking about. I think it is a great moment. The whole world is waiting to see what Vikram will do and What Pragyan will come out and do… I am also enthusiastically waiting,” Annadurai added.

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface.

The mission objectives of Chandrayaan-3 are to demonstrate a safe and soft landing on the lunar surface, to demonstrate rover roving on the Moon, and to conduct in-situ scientific experiments.

The lander has the capability to soft land at a specified lunar site and deploys the rover that will carry out in-situ chemical analysis of the Moon’s surface during the course of its mobility.

The lander and the rover have scientific payloads to carry out experiments on the lunar surface.


Is the iQoo Neo 7 Pro the best smartphone you can buy under Rs. 40,000 in India? We discuss the company’s recently launched handset and what it has to offer on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

AMoRE Experiment Sets New Benchmark in Neutrinoless

Published

on

By

AMoRE Experiment Sets New Benchmark in Neutrinoless

The latest phase of the AMoRE (Advanced Mo-based Rare Process Experiment) project has yielded significant findings in the search for neutrinoless double beta decay, a process that could redefine understanding of fundamental particle physics. Conducted at the Yangyang Underground Laboratory in Korea, the study involved the use of molybdate scintillating crystals at extremely low temperatures to detect this elusive nuclear event. While no clear evidence was observed, the research has set a new upper limit on the decay halflife of molybdenum-100, refining the parameters for future experiments in the field.

New Constraints Established

According to the study published in Physical Review Letters, the AMoRE collaboration utilised multiple kilograms of molybdenum-100, a radioactive isotope, in the form of scintillating crystals. The experiment aimed to detect whether two neutrons in a nucleus could decay into two protons without emitting neutrinos, a phenomenon that would confirm the neutrino and antineutrino as identical particles. Detection of this process is considered crucial for exploring matter-antimatter asymmetry in the universe.

In an interview with Phys.org, Yoomin Oh, corresponding author of the study, explained that the neutrino is one of the elementary particles in the Standard Model. It was ‘invented’ by Wolfgang Pauli about a hundred years ago and discovered a couple of decades later than that. He added that while neutrinos are among the most abundant particles, their properties, including mass, remain largely unknown.

Next Phase: AMoRE-II at Yemilab

AMoRE-I achieved the highest sensitivity ever recorded for detecting neutrinoless double beta decay in molybdenum-100, but no definitive signal was found. This outcome has refined the experimental approach, with the next phase, AMoRE-II, currently being developed at Yemilab, a newly constructed underground research facility in Korea.

The upcoming phase will involve a significantly larger quantity of molybdenum-based crystal detectors and an upgraded low-temperature detection system. The AMoRE collaboration aims to achieve an even lower background environment, enhancing the sensitivity of the experiment. Data collection for AMoRE-II is expected to begin within the next year, with researchers hoping to uncover new insights into the nature of neutrinos.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Assassin’s Creed Shadows Hits 2 Millions Players, Surpasses Launches of Assassin’s Creed Origins, Odyssey



Den of Thieves 2: Pantera OTT Release Date: When and Where to Watch it Online?

Continue Reading

Science

Did black hole radiation shape the universe?

Published

on

By

Did black hole radiation shape the universe?

A theoretical form of radiation first proposed by Stephen Hawking may have played a role in shaping the universe after the Big Bang, as suggested by recent research. The phenomenon is known as Hawking radiation. It was introduced in the 1970s when Hawking theorised that black holes could emit radiation despite their widely accepted nature as objects that absorb all matter. The study suggests that primordial black holes which are believed to have existed in the early universe, may have released intense radiation. This emission could have influenced cosmic structures in ways previously unaccounted for.

Findings from the Study

According to the study published in the Journal of Cosmology and Astroparticle Physics, a phase may have occurred in the early universe where primordial black holes dominated the energy density before evaporating through Hawking radiation. The researchers state that ultra-light primordial black holes could have rapidly gained prominence during expansion, leaving behind observable effects. The research suggests that the impact of these black holes was powerful enough to influence the formation of galaxies and cosmic structures.

Examining the Role of Hawking Radiation

The study builds on Hawking’s work. He merged aspects of quantum mechanics and general relativity. Black holes were once thought to trap everything indefinitely. The Hawking’s theory introduced the possibility of radiation emission. It is reported that larger black holes radiate at an extremely low rate, making detection with existing technology impossible. The focus shifts to smaller primordial black holes, estimated to be less than 100 tons in mass, as their radiation levels could have shaped the universe’s early structure.

Potential Implications of the Research

The study explores the possibility of Hawking relics which are stable particles resulting from the evaporation of black holes. If these particles are detected, it could provide insights into the cosmic radiation budget and the formation of atomic nuclei. The research suggests that primordial black holes must have evaporated before certain cosmic events to align with existing atomic models. While Hawking relics have not been directly observed, future technological advancements may allow for their detection. The findings open avenues for understanding black hole physics and the universe’s evolution.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Aghathiyaa Tamil Fantasy Thriller Now Streaming on Sun NXT



Assassin’s Creed Shadows Hits 2 Millions Players, Surpasses Launches of Assassin’s Creed Origins, Odyssey

Related Stories

Continue Reading

Science

Artemis II Orion Service Module Secured for Launch at Kennedy Space Center

Published

on

By

Artemis II Orion Service Module Secured for Launch at Kennedy Space Center

NASA’s Artemis II Orion spacecraft has gone through a critical step in its preparation for launch. Three spacecraft adapter jettison fairings have been installed on the service module inside the Neil A. Armstrong Operations and Checkout Building at the Kennedy Space Center in Florida. This installation was completed on March 19, 2025. It plays an important role in protecting the spacecraft during its ascent. The fairings shield the solar array wings from extreme conditions such as heat and wind while also helping to distribute the force generated by the Space Launch System (SLS) rocket. Once the spacecraft reaches space, the panels will detach, which will reduce the overall mass and allow the solar wings to deploy.

Structural Enhancements for Launch Readiness

According to NASA, the European-built service module is a key component of the Orion spacecraft. It provides power, propulsion and life support for the mission. Four solar array wings were fitted earlier in March, forming an important part of the module’s design. The newly added fairing panels are essential for safeguarding these components during launch. Their primary function is to resist the intense vibrations and aerothermal forces experienced during liftoff. Once the spacecraft exits Earth’s atmosphere, the fairings will separate, ensuring the solar arrays can function as intended.

Mission Details and Crew Objectives

The Artemis II mission will be NASA’s first crewed flight under the Artemis programme. The spacecraft will carry four astronauts. This includes NASA’s Reid Wiseman, Victor Glover and Christina Koch, along with Canadian Space Agency astronaut Jeremy Hansen. They will gp on a 10-day mission to orbit the Moon, testing the spacecraft’s capabilities before future deep-space missions. The service module will supply oxygen, water and temperature control to support the crew during their journey.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Zakir Khan’s Delulu Express Stand-Up Special Now Streaming on Prime Video



Nothing Explains Why It Used UFS 2.2 Storage in Phone 3a and Phone 3a Pro

Related Stories

Continue Reading

Trending