Connect with us

Published

on

After the successful Chandrayaan-3 mission to the Moon, ISRO on Monday announced that India’s first solar mission Aditya-L1 to study the Sun will be launched on September 2 at 11.50 am from Sriharikota spaceport. 

Aditya-L1 spacecraft is designed to provide remote observations of the solar corona and in-situ observations of the solar wind at L1 (Sun-Earth Lagrange point), which is about 1.5 million kilometres from the Earth.

Lagrange Points are positions in space where the gravitational forces of the Sun and the Earth produce enhanced regions of attraction and repulsion. These can be used by spacecraft to reduce fuel consumption needed to remain in position, according to NASA. Lagrange points are named in honor of Italian-French mathematician Josephy-Louis Lagrange.

The Bengaluru-headquartered space agency said in a social media post that the spacecraft — the first space-based Indian observatory to study the Sun — would be launched using a PSLV-C57 rocket.

The Aditya-L1 mission, aimed at studying the Sun from an orbit around the L1, would carry seven payloads to observe the photosphere, chromosphere and the corona — the outermost layers of the Sun — in different wavebands.

Aditya-L1 is a fully indigenous effort with the participation of national institutions, an ISRO official said.

The Bengaluru-based Indian Institute of Astrophysics (IIA) is the lead institute for the development of Visible Emission Line Coronagraph (VELC) payload while Inter-University Centre for Astronomy and Astrophysics, Pune, has developed the Solar Ultraviolet Imaging Telescope (SUIT) payload for the mission.

According to ISRO, VELC aims to collect the data for solving how the temperature of the corona can reach about a million degrees while the Sun’s surface itself stays just over 6000 degrees Centigrade.

Aditya-L1 can provide observations on the corona, and on the solar chromosphere using the UV payload and on the flares using the X-ray payloads. The particle detectors and the magnetometer payload can provide information on charged particles and the magnetic field reaching the halo orbit around L1.

The satellite, developed by U R Rao Satellite Centre here, arrived at ISRO’s spaceport of Sriharikota in Andhra Pradesh, earlier this month.

It is planned to be placed in a halo orbit around the L1 point of the Sun-Earth system.

A satellite placed in the halo orbit around the L1 point has the major advantage of continuously viewing the Sun without any planets obstructing the view or causing eclipses, ISRO noted. “This will provide a greater advantage of observing the solar activities and its effect on space weather in real time,” it said.

Using the special vantage point L1, four payloads would directly view the Sun and the remaining three payloads are expected to carry out in-situ studies of particles and fields at the L1 point, thus providing important scientific studies of the propagatory effect of solar dynamics in the interplanetary medium.

“The SUITs of Aditya L1 payloads are expected to provide the most crucial information to understand the problem of coronal heating, coronal mass ejection (CME), pre-flare and flare activities and their characteristics, dynamics of space weather, propagation of particle and fields etc,” ISRO said.

The major science objectives of the Aditya-L1 mission are: study of solar upper atmospheric (chromosphere and corona) dynamics; study of chromospheric and coronal heating, physics of the partially ionised plasma, initiation of the coronal mass ejections, and flares; observe the in-situ particle and plasma environment providing data for the study of particle dynamics from the Sun; and physics of solar corona and its heating mechanism.

Besides, the mission aims to study diagnostics of the coronal and coronal loops plasma: temperature, velocity and density; development, dynamics and origin of CMEs; identify the sequence of processes that occur at multiple layers (chromosphere, base and extended corona) which eventually leads to solar eruptive events; magnetic field topology and magnetic field measurements in the solar corona; and drivers for space weather (origin, composition and dynamics of solar wind).

The instruments of Aditya-L1 are tuned to observe the solar atmosphere, mainly the chromosphere and corona. In-situ instruments will observe the local environment at the L1 point. 

Continue Reading

Science

ISRO Postpones Docking of SpaDeX Satellites Again

Published

on

By

ISRO Postpones Docking of SpaDeX Satellites Again

The Indian Space Research Organisation (ISRO) has postponed its Space Docking Experiment (SpaDex) mission which was scheduled for Thursday, after the satellites drifted more than expected during a manoeuvre, ISRO said in a statement on Wednesday.

This is the second time that the docking experiment has been postponed.
It was originally scheduled for January 7.

In a post on X, ISRO said, “While making a maneuver to reach 225 m between satellites, the drift was found to be more than expected post non-visibility period.”

“The planned docking for tomorrow is postponed. Satellites are safe,” it added.

Earlier, on Monday, the ISRO had postponed the docking of its SpaDex mission program, initially scheduled for January 7, 2025. The new date for the docking has been set for January 9, 2025. ISRO has not provided any specific reason for the schedule change.

On December 30, ISRO achieved a historic feat by launching PSLV-C60 with SpaDeX and innovative payloads.

The SpaDeX mission is a cost-effective technology demonstrator mission for the demonstration of in-space docking using two small spacecraft launched by PSLV. The primary objective of the SpaDeX mission is to develop and demonstrate the technology needed for the rendezvous, docking, and undocking of two small spacecraft (SDX01, which is the Chaser, and SDX02, the Target, nominally) in a low-Earth circular orbit.

Union Minister of State (Independent Charge) of the Ministry of Earth Sciences, Jitendra Singh, last week said that the SpaDeX mission was named “Bharatiya Docking Technology” because it is purely an indigenous mission, and India is carrying out the first such experiment related to docking technology.

The Union MoS further stated that SpaDeX’s mission very much aligns with Prime Minister Narendra Modi’s vision of “Aatmanirbhar Bharat.”

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

Published

on

By

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

The highly anticipated debut launch of Blue Origin’s New Glenn rocket has been scheduled for January 10, 2025. The heavy-lift rocket, designed for both commercial and government missions, will take off from Florida’s Cape Canaveral Space Force Station. A launch window of three hours, beginning at 1 a.m. EST, has been announced. The rocket’s inaugural flight marks a significant milestone for Blue Origin as the company aims to validate its capabilities and establish itself as a major player in the space industry.

New Glenn’s Mission and Capabilities

According to Blue Origin, as reported by space.com, the New Glenn rocket is a reusable, 320-foot-tall launch vehicle capable of carrying 50 tons (45 metric tons) to low Earth orbit (LEO). The NG-1 mission will test the company’s Blue Ring spacecraft platform, which is designed to support a variety of orbital payloads. This demonstration will include assessments of communication systems, in-space telemetry, and ground-based tracking capabilities. The payload will remain aboard the rocket’s second stage for a six-hour mission, as stated by Blue Origin.

Booster Recovery and Future Goals

The mission will also attempt a recovery of the rocket’s first stage booster, which will land on a ship stationed in the Atlantic Ocean, as per reports from space.com. The company’s senior vice president, Jarrett Jones, emphasised the importance of the flight, stating that rigorous preparations had been undertaken but that true insights could only be gained through actual launch experiences.

NG-1 is a critical step toward securing certification for U.S. national security missions. A successful outcome would bring Blue Origin closer to fulfilling these high-stakes contracts, further solidifying its position in the competitive aerospace sector.

This launch will serve as a proving ground for the New Glenn system, with valuable data expected to inform future missions and technology advancements.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Spiders Detect Smells Through Leg Hairs, Claims New Study

Published

on

By

Spiders Detect Smells Through Leg Hairs, Claims New Study

New research has revealed that spiders use specialised hairs on their legs to detect airborne scents, offering fresh insights into the sensory abilities of these arachnids. This discovery has resolved a long-standing question about how spiders, which lack antennae like insects, can identify odours such as pheromones. Male spiders were observed using olfactory hairs, known as wall-pore sensilla, to sense sex pheromones emitted by females. This mechanism underscores their ability to locate potential mates through chemical signals.

Olfactory Sensilla Identified

According to a study, published in the Proceedings of the National Academy of Sciences, the wall-pore sensilla were found on the upper legs of adult male wasp spiders (Argiope bruennichi). These microscopic structures are believed to be critical for detecting pheromones. High-resolution scanning electron microscopy revealed thousands of these sensilla, which were absent in females and juvenile males. This specific distribution supports their role in mate detection. Researchers emphasised to phys.org that these findings have mapped and identified the elusive sensilla, previously thought to be absent in spiders.

Response to Pheromones

Experiments demonstrated the sensitivity of these sensilla to pheromone compounds. Tiny amounts of the substance, such as 20 nanograms, elicited significant neuronal responses. The experiments involved exposing the sensilla to pheromone puffs, and responses were observed consistently across various leg pairs. The researchers concluded that spiders’ olfactory systems rival the sensitivity seen in insects, highlighting their advanced chemical detection capabilities.

Broader Implications

The study explored 19 other spider species and confirmed the presence of wall-pore sensilla in most male spiders, suggesting that this trait evolved multiple times. However, it was noted that some primitive species lack these structures. Future research is expected to investigate how female spiders detect smells, the types of chemicals relevant to their behaviours, and the evolutionary aspects of olfaction in spiders.

This breakthrough provides a foundation for understanding the sophisticated sensory mechanisms that govern spider behaviour.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending