Connect with us

Published

on

The Laser-Induced Breakdown Spectroscope instrument onboard ‘Pragyan‘ rover of Chandrayaan-3 has unambiguously confirmed the presence of sulphur on the lunar surface near south pole, through first-ever in-situ measurements, ISRO said on Tuesday. 

It also said the instrument also detected aluminium, calcium, iron, chromium, titanium, manganese, silicon and oxygen, as expected.

“The Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard Chandrayaan-3 Rover has made the first-ever in-situ measurements on the elemental composition of the lunar surface near the south pole. These in-situ measurements confirm the presence of Sulphur (S) in the region unambiguously, something that was not feasible by the instruments onboard the orbiters,” the space agency said in a statement.

According to ISRO, LIBS is a scientific technique that analyses the composition of materials by exposing them to intense laser pulses.

“A high-energy laser pulse is focused onto the surface of a material, such as a rock or soil. The laser pulse generates an extremely hot and localised plasma. The collected plasma light is spectrally resolved and detected by detectors such as Charge Coupled Devices. Since each element emits a characteristic set of wavelengths of light when it’s in a plasma state, the elemental composition of the material is determined,” it said.

Preliminary analyses have unveiled the presence of Aluminum (Al), Sulphur (S), Calcium (Ca), Iron (Fe), Chromium (Cr), and Titanium (Ti) on the lunar surface. Further measurements have revealed the presence of manganese (Mn), silicon (Si), and oxygen (O), it said.

“Thorough investigation regarding the presence of Hydrogen is underway,” ISRO said.

LIBS instrument is developed at the Laboratory for Electro-Optics Systems at Peenya Industrial Estate, Bengaluru where the first India satellite was fabricated in 1975.

India on August 23 scripted history as ISRO’s ambitious third Moon mission Chandrayaan-3’s Lander Module (LM) touched down on the lunar surface, making it only the fourth country to accomplish the feat, and first to reach the uncharted south pole of Earth‘s only natural satellite.

Prime Minister Narendra Modi on Saturday announced the decision to name the spot where Chandrayaan-3 Vikram lander made soft landing as ‘Shiv Shakti Point’ and the site where the Chandrayaan-2 lander crash-landed on the Moon’s surface in 2019 would be known as “Tiranga Point”.

Also, August 23, the day the Chandrayaan-3 lander touched down on the lunar surface, would be celebrated as ‘National Space Day’, Modi had said.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Raphael Domjan Soars to 8,224 Meters in SolarStratos

Published

on

By

Raphael Domjan Soars to 8,224 Meters in SolarStratos

Raphael Domjan, Swiss Aviator, came close to reaching the distance of a world record while flying a solar Stratos plane on Sunday. He departed from Sion Airport in Southwestern Switzerland, reaching an altitude of 8224 meters; it lasted for four hours. Domjan, tagged as an eco-explorer for his aviation focus, and is known for his eco-friendly ambitions. According to him, achieving a height of more than 10,000 meters is still a dream for him to come true soon, hopefully.

Raphael Domjan Sets New SolarStratos Altitude Record

As per TechExplore, In 2010, Andre Borschberg set the record for the highest flight in a solar plane for 9,235 meters as a Swiss pilot flying the Solar Impulse. Domjan won’t just break the record of Borschberg but also intends to fly to the same altitude just like commercial jets. The challenge is as important as Solar Stratos has a boundary on the altitude that it can reach and while relying on solar power only.

The Road to 10,000 Meters: A Green Aviation Dream

Prior to this attempt, Domjan completed a practice flight on July 31, reaching an altitude of 6,589 meters, which was a record for the SolarStratos. Last Friday, he attempted a flight, but the thermals which usually aid in altitude gain were absent. He decided to turn back to conserve battery power for future attempts.

Earlier this week, conditions proved more favorable, leading to a new record altitude for the SolarStratos. As an innovation, the plane has solar panels on its 24.8-meter wings, which power its batteries. During the flight’s solar charging cycle, the plane’s batteries will automatically recharge to full. Domjan and his team are preparing for the next record attempt to make sure it will be a guaranteed success.

Asked about the 10,000 meter target, Domjan believes it is a target which will be achieved only by relentless attempts. For him, it is about the achievement, and an achievement only possible through determination and resilience on the aviations of the future as a green revolution.

Continue Reading

Science

Singapore Researchers Build Maple Seed Drone with Record 26-Minute Flight

Published

on

By

Singapore Researchers Build Maple Seed Drone with Record 26-Minute Flight

A flying robot inspired by the anatomy of a maple seed, samaras, was developed by researchers of the Singapore University of Technology and Design (SUTD). This new monocopter, besides flying much longer than other drones of its size, proves its superiority by running on a single rotor for 26 minutes. This feat is a marked achievement, proving the goals of SUTD’s associate professor Foong Shaohui, who built a 50 minute flying drone for Singapore’s 50 year anniversary. Now, the focus shifts to efficiency in smaller designs.

Nature-Inspired Design Brings Breakthrough in Small Drone Efficiency

According to Techxplore, Nature proves to be the ultimate guide for the SUTD team, as they had previously designed quadcopters with no external help. In the case of maple seeds that spin and gently fall to the ground creating lift, the team built a singular powered wing monocopter. This improvement, while simple, also greatly enhances control, efficiency, effectiveness, and reduces weight.

The collective mix of human creativity with AI enabled tools to further enhance the designs fuel origami’s makes the monocopter a success. AI enabled tools allowed the team to simulate various shapes, angles, and weight before creating the final prototype. As a result, the team had a drone that is 32 grams while retaining the ability to endure more than other drones.

From 10-Year Challenge to Record-Breaking Maple Seed Monocopter

This small monocopter could be extremely beneficial for low-cost, long-duration missions. An example mission could be to transport instruments for measuring meteorological conditions. Taking home the Sustainability Winner award at the 2024 Dyson Awards felt like a decisive victory for monocopter, underscoring its potential for environmental monitoring missions. Now refinement efforts will target a larger payload, longer endurance, and extended range, all without adding weight.

The achievement shows the ten years of steady progress, which started from the SG50 quadcopter and evolved into the SG60 monocopter. It is planned for rollout during the 60th birthday of Singapore festivities. It has been guided by advanced engineering, insights from nature and on-board AI from the team has demonstrated the practical versatility and impressive performance of compact flying robots.

Continue Reading

Science

NASA’s Curiosity Rover Spots Ancient Coral-Like Rock on Mars

Published

on

By

NASA’s Curiosity Rover Spots Ancient Coral-Like Rock on Mars

NASA’s Curiosity Mars rover used the Remote Micro Imager, part of its ChemCam instrument, to view a small, light-colored, wind-eroded rock, shaped like a piece of coral on July 24, 2025, the 4,609th Martian day, or sol, of the mission in Gale Crater. Curiosity has found many rocks like this one, which were formed by ancient water combined with billions of years of sandblasting by the wind. The approximately 1-inch-wide (2.5 centimeters) rock with its intricate branches. indicates that Mars once had a watery environment and could have supported life.

Geological Background

According to NASA, Curiosity has found many features like this that formed “billions of years ago when liquid water still existed on Mars” On early Mars, liquid water carried minerals into tiny fractures in rocks; when the water evaporated, it left behind mineral veins. Later, fast winds laden with sand eroded the surrounding rock, leaving behind intricate, branch-like concretions. This process – common on Earth in arid deserts – can create shapes that mimic biological forms, but are purely mineralogical. Thus, researchers stress the rock’s appearance is pseudofossil like: it looks like coral by chance, but is a geological artifact of past water activity. The find reinforces evidence of early Mars being wetter and possibilities of having microbial life.

Curiosity mission

Curiosity landed on Mars in 2012, touching down in the Gale Crater — a meteor impact crater on the boundary between the Red Planet’s cratered southern highlands and its smooth northern plains. The rover’s mission, led by NASA’s Jet Propulsion Laboratory in California, is to scan the Martian surface for any signs that it was habitable at any point in the distant past.The discovery was made on July 24, 2025 (Sol 4609 of the mission) by Curiosity’s ChemCam remote micro-imager and the image was released by NASA’s Jet Propulsion Laboratory in early August.

Continue Reading

Trending