Connect with us

Published

on

Jupiter’s atmospheric composition has been called into question through observations made using an old technique by an amateur astronomer, Steve Hill. The findings have indicated that the planet’s iconic swirling clouds may not be composed of ammonia ice, as previously assumed. This revelation stems from data collected with commercial telescopes and spectral filters, presenting new perspectives on the gas giant’s atmospheric dynamics and chemistry. The observations have sparked further investigation into the structure of Jupiter‘s cloud layers.

Findings from Observational Studies

According to research published in Earth and Space Science, Hill applied a method known as band-depth analysis. This technique measures light absorption at specific wavelengths to map the abundance of gases like ammonia and methane in Jupiter’s atmosphere. As reported by space.com, the data revealed that reflective cloud layers are located at pressure levels of 2-3 bar, far deeper than where ammonia ice was expected to condense at 0.7 bar.

Patrick Irwin, a planetary physicist at the University of Oxford, reviewed Hill’s results and confirmed their accuracy through comparisons with data from instruments such as NASA’s Juno spacecraft and ESO’s Very Large Telescope (VLT). He noted to space.com that the main reflection appears to stem from ammonium hydrosulfide clouds or photochemical products, rather than pure ammonia ice.

Implications and Future Research

Reports indicate that these findings underline the role of photochemistry in shaping Jupiter’s atmosphere, where ammonia is often destroyed faster than it can rise to the upper layers. Similar processes have been observed on Saturn, where cloud layers are also deeper than predicted. Researchers aim to refine models by integrating additional data from the VLT, Juno, and other observatories to better understand ammonia’s vertical distribution.

Hill’s approach demonstrates the potential of collaborative efforts between amateur and professional astronomers. These findings not only challenge existing models but also open new pathways for studying atmospheric dynamics on gas giants.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

New Analysis of 1977 Wow! Signal Reveals Stronger Cosmic Mystery

Published

on

By

The famous 1977 “Wow!” signal — a mysterious radio burst detected by Ohio’s Big Ear telescope — has been reanalyzed using modern computing techniques. Researchers digitized old telescope records, finding the signal was about four times stronger than first thought, peaking at 250 Janskys. The recalculations also refined its frequency and sky location, ruling …

Continue Reading

Science

Astronomers Capture Sharpest-Ever Solar Flare Images with NSF’s DKIST Telescope

Published

on

By

Astronomers have achieved a major breakthrough by capturing the sharpest images of a solar flare ever recorded, using the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). Observed at the hydrogen-alpha wavelength during the decay of an X1.3-class solar flare, the images unveiled hundreds of ultra-fine coronal loops averaging just 48 kilometers…

Continue Reading

Science

James Webb Detects Carbon Dioxide–Dominated Coma in Interstellar Object 3I/ATLAS

Published

on

By

The James Webb Space Telescope observed 3I/ATLAS, the third interstellar object detected in our solar system. Its coma is unusually rich in carbon dioxide with little water or carbon monoxide, suggesting a CO₂-rich core or an insulating crust. Findings raise new questions about its cosmic origin.

Continue Reading

Trending