Connect with us

Published

on

Last week, Hurricane Ida knocked out all 8 transmission lines into New Orleans. In Baton Rouge, it took out our communications along with our electricity — with the exception of those who had Verizon. Although most of Baton Rouge is getting back online, New Orleans as well as smaller towns and cities still don’t have power.

Someone shared an article by Canary Media with me, and after reading it, I fully agree. We need microgrids here in Louisiana, yet our leaders don’t seem to want them. Advocates have been trying for years to make our local grid resilient, but oddly, our leaders don’t seem to want that. Why?

This isn’t the first time I’ve seen governments (local, state, etc.) purposely refuse to do things that benefit everyone. It’s like they want us to have messed up grids so that we suffer during disasters. The article cited another article by Canary Media that showed the outcome following local authorities’ repeated dismissals of proposals to invest in decentralized and resilient grid upgrades.

In 2016, a New Orleans-based nonprofit, Alliance for Affordable Energy, had a great alternative to Entergy New Orleans’ plan to build a new natural-gas-fired power plant. That idea was to build clean electricity resilience from the ground up — an integrated resilience plan that challenged Entergy New Orleans to try to find an alternative to a central power plant. The plant would be subject to known vulnerabilities — such as the impact of a category 4 hurricane.

The Alliance for Affordable Energy called for pursuing distributed microgrids. The article aptly described these as self-powered islands of solar power, batteries, and backup generation that could provide electricity during grid outages. If only we had these during Ida. Executive director Logan Atkinson Burke shared how this was frustrating. “Had we taken the time and initiative to plan for distributed generation, distributed solar-plus-storage, and more energy efficiency, people would be more prepared to shelter safely and comfortably,” Burke said. “We’ve been advocating for microgrids to be built within the city for years for precisely this reason.”

Here’s Why Entergy Doesn’t Want Distributed Energy

The problem is Entergy’s long-standing opposition to distributed energy. The utility has consistently opposed including local renewable energy and energy storage in its own plans. Utilities also get an incentive when they convince regulators to approve large power plants instead of enabling customer-sited distributed energy such as rooftop solar. The article pointed out that vertically integrated utilities such as Entergy are paid a guaranteed rate of return on capital investments, including power plants. Self-supplied customer energy reduces the revenue and profits Entergy and other utilities earn from selling electricity.

It’s all about money, profits, and greed. They make more money from weakening our defenses against disasters such as Ida than they would from strengthening them. And we, the people, end up paying the price. And our government readily caters to this greed. Not just Louisiana’s — this trend is seen elsewhere as well.

Car dealerships in Connecticut, for example, lobby legislatures to prevent Tesla and Rivian from coming to their state and opening a sales center. This hurts the economy, but they do it anyway. It’s all about greed, money, and profits.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

New DOE report finds 90% of wind turbine materials are recyclable

Published

on

By

New DOE report finds 90% of wind turbine materials are recyclable

The US Department of Energy (DOE) has released an encouraging new report revealing that 90% of wind turbine materials are already recyclable using existing infrastructure, but tackling the remaining 10% needs innovation.

That’s why the Biden administration’s Bipartisan Infrastructure Law has allocated over $20 million to develop technologies that address these challenges.

Why this matters

The wind energy industry is growing rapidly, but questions about what happens to turbines at the end of their life are critical. Recyclable wind turbines means not only less waste but also a more affordable and sustainable energy future.

According to Jeff Marootian, principal deputy assistant secretary for the Office of Energy Efficiency and Renewable Energy, “The US already has the ability to recycle most wind turbine materials, so achieving a fully sustainable domestic wind energy industry is well within reach.”

The report, titled, “Recycling Wind Energy Systems in the United States Part 1: Providing a Baseline for America’s Wind Energy Recycling Infrastructure for Wind Turbines and Systems,” identifies short-, medium-, and long-term research, development, and demonstration priorities along the life cycle of wind turbines. Developed by researchers at the National Renewable Energy Laboratory, with help from Oak Ridge and Sandia National Laboratories, the findings aim to guide future investments and technological innovations.

What’s easily recyclable and what’s not

The bulk of a wind turbine – towers, foundations, and steel-based drivetrain components – is relatively easy to recycle. However, components like blades, generators, and nacelle covers are tougher to process.

Blades, for instance, are often made from hard-to-recycle materials like thermoset resins, but switching to recyclable thermoplastics could be a game changer. Innovations like chemical dissolution and pyrolysis could make blade recycling more viable in the near future.

Critical materials like nickel, cobalt, and zinc used in generators and power electronics are particularly important to recover.

Key strategies for a circular economy

To make the wind energy sector fully sustainable, the DOE report emphasizes the adoption of measures such as:

  • Better decommissioning practices – Improving how turbine materials are collected and sorted at the end of their life cycle.
  • Strategic recycling sites – Locating recycling facilities closer to where turbines are decommissioned to reduce costs and emissions.
  • Advanced material substitution – Using recyclable and affordable materials in manufacturing.
  • Optimized material recovery Developing methods to make recovered materials usable in second-life applications.

Looking ahead

The DOE’s research also underscores the importance of regional factors, such as the availability of skilled workers and transportation logistics, in building a cost-effective recycling infrastructure. As the US continues to expand its wind energy capacity, these findings provide a roadmap for minimizing waste and maximizing sustainability.

More information about the $20 million in funding available through the Wind Turbine Technology Recycling Funding Opportunity can be found here. Submission deadline is February 11.

Read more: The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Mazda finally reveals plans to build its first dedicated EV: Here’s what we know so far

Published

on

By

Mazda finally reveals plans to build its first dedicated EV: Here's what we know so far

Mazda is finally stepping up with plans to build its first dedicated EV. The upcoming Mazda EV will be made in Japan and based on a new in-house platform. Here’s what we know about it so far.

The first dedicated Mazda EV is coming soon

Although Mazda isn’t the first brand that comes to mind when you think of electric vehicles, the Japanese automaker is finally taking a step in the right direction.

Mazda revealed on Monday that it plans to build a new module pack plant in Japan for cylindrical lithium-ion battery cells.

The new plant will use Panasonic Energy’s battery cells to produce modules and EV battery packs. Mazda plans to have up to 10 GWh of annual capacity at the facility. The battery packs will power Mazda’s first dedicated EV, which will also be built in Japan using a new electric vehicle platform.

Mazda said it’s “steadily preparing for electrification technologies” under its 2030 Management Plan. The strategy calls for a three-phase approach through 2030.

The first phase calls for using its existing technology. In the second stage, Mazda will introduce a new hybrid system and EV-dedicated vehicles in China.

Mazda-first-dedicted-EV
Mazda EZ-6 electric sedan (Source: Changan Mazda)

The third and final phase calls for “the full-fledged launch” of EVs and battery production. By 2030, Mazda expects EVs to account for 25% to 40% of global sales.

Mazda launched the EZ-6, an electric sedan, in China last October. It starts at 139,800 yuan, or around $19,200, and is made by its Chinese joint venture, Changan Mazda.

Mazda-first-dedicted-EV
Mazda EZ-6 electric sedan (Source: Changan Mazda)

Based on Changan’s hybrid platform, the electric sedan is offered in EV and extended-range (EREV) options. The all-electric model gets up to 600 km (372 miles) CLTC range with fast charging (30% to 80%) in 15 minutes.

At 4,921 mm long, 1,890 mm wide, and 1,485 mm tall with a wheelbase of 2,895 mm, Mazda’s EZ-6 is about the size of a Tesla Model 3 (4,720 mm long, 1,922 mm wide, and 1,441 mm tall with a 2,875 mm wheelbase).

Mazda-first-dedicted-EV-interior
Mazda EZ-6 interior (Source: Changan Mazda)

Inside, the electric sedan features a modern setup with a 14.6″ infotainment, a 10.1″ driver display screen, and a 50″ AR head-up display. It also includes zero-gravity reclining seats and smart features like voice control.

The EZ-6 is already off to a hot sales start, with 2,445 models sold in November. According to Changan Mazda, the new EV was one of the top three mid-size new energy vehicle (NEV) sedans of joint ventures sold in China in its first month listed.

Will Mazda’s first dedicated EV look like the EZ-6? We will find out with Mazda aiming to launch the first EV models on its new in-house platform in 2027. Stay tuned for more.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Trump says he will revoke Biden offshore drilling ban on first day in office

Published

on

By

Trump says he will revoke Biden offshore drilling ban on first day in office

A view of offshore oil and gas platform Esther in the Pacific Ocean on January 5, 2025 in Seal Beach, California. 

Mario Tama | Getty Images

President-Elect Donald Trump said Tuesday that he will reverse President Joe Biden‘s ban on offshore drilling along most of the U.S. coastline as soon as he takes office.

“I’m going to have it revoked on day one,” Trump said at a news conference, though he indicated that reversing the ban might require litigation in court.

Biden announced Monday that he would protect 625 million acres of ocean from offshore oil and gas drilling along the East and West coasts, the eastern Gulf of Mexico, and Alaska’s Northern Bering Sea. The president issued the ban through a provision of the 1953 Outer Continental Shelf Lands Act.

An order by Trump attempting to reverse the ban will likely end up in court and could ultimately be struck down.

During his first term, Trump tried to issue an executive order to reverse President Barack Obama’s use of the law to protect waters in the Arctic and Atlantic from offshore drilling. A federal court ultimately ruled that Trump’s order was not lawful and reversing the ban would require an act of Congress.

The Republican Party has a majority in both chambers of the new Congress.

Don’t miss these insights from CNBC PRO

Continue Reading

Trending