Connect with us

Published

on

With declining technology costs and increasing renewable deployment, energy storage is poised to be a valuable resource on future power grids — but what is the total market potential for storage technologies, and what are the key drivers of cost-optimal deployment?

In the latest report from the Storage Futures Study (SFS), Economic Potential of Diurnal Storage in the U.S. Power Sector, NREL analysts Will Frazier, Wesley Cole, Paul Denholm, Scott Machen, and Nate Blair, describe significant market potential for utility-scale diurnal storage (up to 12 hours) in the U.S. power system through 2050. They found storage adds the most value to the grid and deployment increases when the power system allows storage to simultaneously provide multiple grid services and when there is greater solar photovoltaic (PV) penetration.

“We find significant market potential for diurnal energy storage across a variety of modeled scenarios, mostly occurring by 2030,” said Will Frazier, National Renewable Energy Laboratory (NREL) analyst and lead author of the report. “To realize cost-optimal storage deployment, the power system will need to allow storage to provide capacity and energy time-shifting grid services.”

The SFS — led by NREL and supported by the U.S. Department of Energy’s (DOE’s) Energy Storage Grand Challenge — is a multiyear research project to explore how advancing energy storage technologies could impact the deployment of utility-scale storage and adoption of distributed storage, including impacts to future power system infrastructure investment and operations.

Expanded Capabilities to Model Storage Potential

For this work, researchers added new capabilities to NREL’s Regional Energy Deployment System (ReEDS) capacity expansion model to accurately represent the value of diurnal battery energy storage when it is allowed to provide grid services — an inherently complex modeling challenge. Cost and performance metrics focus on Li-ion batteries because the technology has more market maturity than other emerging technologies. Because the value of storage depends greatly on timing, ReEDS simulated system operations every hour.

NREL researchers used ReEDS to model two sets of scenarios — one that allows storage to provide multiple grid services and one that restricts the services that storage can provide. All the scenarios use different cost and performance assumptions for storage, wind, solar PV, and natural gas to determine the key drivers of energy storage deployment.

Installed Storage Capacity Could Increase Five-Fold by 2050

Across all scenarios in the study, utility-scale diurnal energy storage deployment grows significantly through 2050, totaling over 125 gigawatts of installed capacity in the modest cost and performance assumptions — a more than five-fold increase from today’s total. Depending on cost and other variables, deployment could total as much as 680 gigawatts by 2050.

Chart courtesy of NREL — grid-scale U.S. storage capacity could grow five-fold by 2050.

Chart courtesy of NREL — grid-scale U.S. storage capacity could grow five-fold by 2050.

“These are game-changing numbers,” Frazier said. “Today we have 23 gigawatts of storage capacity, all of which is pumped-hydro.”

Initially, the new storage deployment is mostly shorter duration (up to 4 hours) and then progresses to longer durations (up to 12 hours) as deployment increases, mostly because longer-duration storage is currently more expensive. In 2030, annual deployment of battery storage ranges from 1 to 30 gigawatts across the scenarios. By 2050, annual deployment ranges from 7 to 77 gigawatts.

System Flexibility Key to Storage Deployment

To understand what could drive future grid-scale storage deployment, NREL modeled the techno-economic potential of storage when it is allowed to independently provide three grid services: capacity, energy time-shifting, and operating reserves.

  • Blue — Energy Time-Shifting & Operating Reserves (No Firm Capacity From Storage)
  • Black — Firm Capacity & Energy Time-Shifting (No Operating Reserves From Storage)
  • Green — Firm Capacity & Operating Reserves (No Energy Time-Shifting From Storage)

NREL found not allowing storage to provide firm capacity impacts future deployment the most, although not allowing firm capacity or energy time-shifting services can also substantially decrease potential deployment. Operating reserves, on the hand, do not drive the deployment of storage within the study because they find limited overall market potential for this service.

Storage and Solar Symbiosis

Multiple NREL studies have pointed to the symbiotic nature of solar and storage, and this study reinforces that relationship. More PV generation makes peak demand periods shorter and decreases how much energy capacity is needed from storage — thereby increasing the value of storage capacity and effectively decreasing the cost of storage by allowing shorter-duration batteries to be a competitive source of peaking capacity. NREL found over time the value of energy storage in providing peaking capacity increases as load grows and existing generators retire.

Solar PV generation also has a strong relationship with time-shifting services. More PV generation creates more volatile energy price profiles, increasing the potential of storage energy time-shifting. Like peaking capacity, the value of energy time-shifting grows over time with increased PV penetration.

Next Up in the Storage Futures Study

The SFS will continue to explore topics from the foundational report that outlines a visionary framework for the possible evolution of the stationary energy storage industry — and the power system as a whole.

The next report in the series will assess customer adoption potential of distributed diurnal storage for several future scenarios. The study will also include the larger impacts of storage deployment on power system evolution and operations.

Visit the Storage Futures Study page for more information about the broader study, and learn more about NREL’s energy analysis research.

Learn More in June 22 Webinar

Join a webinar from 9 to 10 a.m. MT on Tuesday, June 22, to learn more about SFS results with Will Frazier and Nate Blair and hear from SFS analyst Paul Denholm on the visionary framework for the possible evolution of the stationary energy storage industry, outlined in the first report in the series. Register to attend.

Article courtesy of NREL, the U.S. Department of Energy.

Image courtesy of 8minute Solar Energy, plus Energy storage project.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Workhorse electric delivery vans arrive in Canada this spring

Published

on

By

Workhorse electric delivery vans arrive in Canada this spring

Following approval from Transport Canada, EV startup Workhorse will be bringing the W56 and W750 model electric delivery vans to commercial truck dealers in Canada as early as this spring.

Workhorse first showed its W56 medium-duty electric truck at Indiana’s Work Truck Week in 2023, and has sold the trucks to logistics and delivery companies like FedEx and Pride Group – which ordered more than six thousand of the electric vans in 2021, and continues to expand its fleet.

“This is a major step forward for Workhorse,” says Josh Anderson, Workhorse’s chief technology officer in a press statement. “Pre-clearance from Transport Canada opens up a large new market for our products throughout Canada, including with fleets that operate across borders in North America.”

As part of the approval process, Workhorse completed its registration as a foreign manufacturer under Transport Canada’s Appendix G clearance program. Transport Canada confirmed the vans’ compliance with Canadian Motor Vehicle Safety Standards (CMVSS) for both vehicles – but it remains to be seen if and how the latest tariff-driven trade war between the Trump Administration’s US and Canada will impact Workhorse’s plans to expand throughout North America.

Advertisement – scroll for more content

Despite that uncertainty, Workhorse execs remain upbeat. “We’re excited that our electric step vans can now reach Canadian roads and highways, providing reliable, zero-emission solutions that customers can depend on,” added Anderson.

Canadian pricing has yet to be announced.

Electrek’s Take

FedEx Places First Order for 15 Workhorse W56 Step Vans to Grow Zero-Tailpipe Emission Fleet
FedEx electric delivery vehicle; via Workhorse.

There’s no other way to say it: the Trump/Musk co-presidency is disrupting a lot of companies’ plans – and that’s especially true across North American borders. But in all this chaos and turmoil there undoubtedly lies opportunity, and it will be interesting to see who ends up on top.

SOURCE | IMAGES: Workhorse, via Electric Autonomy Canada.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Liebherr developing giant, 140-ton Segway-style autonomous haulers [video]

Published

on

By

Liebherr developing giant, 140-ton Segway-style autonomous haulers [video]

The new Liebherr S1 Vision 140-ton hauler is unlike any heavy haul truck currently on the market – primarily because the giant, self-propelled, single-axle autonomous bucket doesn’t look anything like any truck you’ve ever seen.

Liebherr says its latest heavy equipment concept was born from a desire to rethink truck design with a focus only on core functions. The resulting S1 Vision is primarily just a single axle with two powerful electric motors sending power to a pair of massive airless tires designed carry loads up to 131 tonnes (just over 140 tons).

The design enables rapid maintenance, as important components easily accessible for quick servicing. Wear parts can be replaced efficiently, and the electric drive significantly reduces maintenance work. This helps to minimise downtimes and increases operational efficiency.

LIEBHERR

Because of its versatility, durability, and ability to perform zero-turn maneuvers that other equipment simply can’t, the Liebherr S1 Vision can be adapted for various applications, including earthmoving, mining, and even agriculture. There’s also a nonzero chance of this technology finding applications supporting other on-site equipment through charging or fuel delivery.

The S1 accomplishes that trick safely with the help of an automatic load leveling system that ensures maximum stability, even on bumpy or rough terrain. The company says this technology significantly reduces the risk of tipping while providing smooth and secure operation across various environments.

Advertisement – scroll for more content

Liebherr will show the S1 Vision at this year’s bauma equipment exhibition in Munich, Germany. The design has already been nominated for the bauma Innovation Award in the Mechanical Engineering category – and my money’s on it winning.

Electrek’s Take

This is such goofy, stupid fun that if it was wheelbarrow-sized I’d have three of them. I can’t imagine the insanity of watching one of these things roll across a job site with 100 tons of granite in the bucket – and will have nightmares about the kind of damage it could do if it flipped out like a poorly made Chinese hoverboard clone whipping a toddler across a living room … which, in fairness, would probably get a billion views on Instagram or TikTok or whatever.

I can’t wait.

SOURCE | IMAGES: Liebherr.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Meet the newest EV from Hyundai – new HX19e electric excavator

Published

on

By

Meet the newest EV from Hyundai – new HX19e electric excavator

The HD arm of Hyundai has just released the first official images of the new, battery-electric HX19e mini excavator – the first ever production electric excavator from the global South Korean manufacturer.

The HX19e will be the first all-electric asset to enter series production at Hyundai Construction Equipment, with manufacturing set to begin this April.

The new HX19e will be offered with either a 32 kWh or 40 kWh li-ion battery pack – which, according to Hyundai, is nearly double the capacity offered by its nearest competitor (pretty sure that’s not correct –Ed.). The 40kWh battery allows for up to 6 hours and 40 minutes of continuous operation between charges, with a break time top-up on delivering full shift usability.

Those batteries send power to a 13 kW (17.5 hp) electric motor that drives an open-center hydraulic system. Hyundai claims the system delivers job site performance that is at least equal to, if not better than, that of its diesel-powered HX19A mini excavator.

Advertisement – scroll for more content

To that end, the Hyundai XH19e offers the same 16 kN bucket breakout force and a slightly higher 9.4 kN (just over 2100 lb-ft) dipper arm breakout force. The maximum digging depth is 7.6 feet, and the maximum digging reach is 12.9 feet. Hyundai will offer the new electric excavator with just four selectable options:

  • enclosed cab vs. open canopy
  • 32 or 40 kWh battery capacity

All HX19es will ship with a high standard specification that includes safety valves on the main boom, dipper arm, and dozer blade hydraulic cylinders, as well as two-way auxiliary hydraulic piping allows the machine to be used with a range of commercially available implements. The hydraulics needed to operate a quick coupler, LED booms lights, rotating beacons, an MP3 radio with USB connectivity, and an operator’s seat with mechanical suspension are also standard.

Like its counterparts at Volvo CE, the new Hyundai excavator uses automotive-style charging ports to take advantage of existing infrastructure at fleet depots and public charging stations. More detailed specifications, dimensions, and pricing should be announced by bauma.

Electrek’s Take

HX19e electric mini excavator; via Hyundai Construction Equipment.

The ability to operate indoors, underground, or in environments like zoos and hospitals were keeping noise levels down is of critical importance to the success of an operation makes electric equipment assets like these coming from Hyundai a must-have for fleet operators and construction crews that hope to remain competitive in the face of ever-increasing noise regulations. The fact that these are cleaner, safer, and cheaper to operate is just icing on that cake.

SOURCE | IMAGES: HD Hyundai; via Construction Index, Equipment World.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending