With declining technology costs and increasing renewable deployment, energy storage is poised to be a valuable resource on future power grids — but what is the total market potential for storage technologies, and what are the key drivers of cost-optimal deployment?
In the latest report from the Storage Futures Study (SFS), Economic Potential of Diurnal Storage in the U.S. Power Sector, NREL analysts Will Frazier, Wesley Cole, Paul Denholm, Scott Machen, and Nate Blair, describe significant market potential for utility-scale diurnal storage (up to 12 hours) in the U.S. power system through 2050. They found storage adds the most value to the grid and deployment increases when the power system allows storage to simultaneously provide multiple grid services and when there is greater solar photovoltaic (PV) penetration.
“We find significant market potential for diurnal energy storage across a variety of modeled scenarios, mostly occurring by 2030,” said Will Frazier, National Renewable Energy Laboratory (NREL) analyst and lead author of the report. “To realize cost-optimal storage deployment, the power system will need to allow storage to provide capacity and energy time-shifting grid services.”
The SFS — led by NREL and supported by the U.S. Department of Energy’s (DOE’s) Energy Storage Grand Challenge — is a multiyear research project to explore how advancing energy storage technologies could impact the deployment of utility-scale storage and adoption of distributed storage, including impacts to future power system infrastructure investment and operations.
Expanded Capabilities to Model Storage Potential
For this work, researchers added new capabilities to NREL’s Regional Energy Deployment System (ReEDS) capacity expansion model to accurately represent the value of diurnal battery energy storage when it is allowed to provide grid services — an inherently complex modeling challenge. Cost and performance metrics focus on Li-ion batteries because the technology has more market maturity than other emerging technologies. Because the value of storage depends greatly on timing, ReEDS simulated system operations every hour.
NREL researchers used ReEDS to model two sets of scenarios — one that allows storage to provide multiple grid services and one that restricts the services that storage can provide. All the scenarios use different cost and performance assumptions for storage, wind, solar PV, and natural gas to determine the key drivers of energy storage deployment.
Installed Storage Capacity Could Increase Five-Fold by 2050
Across all scenarios in the study, utility-scale diurnal energy storage deployment grows significantly through 2050, totaling over 125 gigawatts of installed capacity in the modest cost and performance assumptions — a more than five-fold increase from today’s total. Depending on cost and other variables, deployment could total as much as 680 gigawatts by 2050.
Chart courtesy of NREL — grid-scale U.S. storage capacity could grow five-fold by 2050.
Chart courtesy of NREL — grid-scale U.S. storage capacity could grow five-fold by 2050.
“These are game-changing numbers,” Frazier said. “Today we have 23 gigawatts of storage capacity, all of which is pumped-hydro.”
Initially, the new storage deployment is mostly shorter duration (up to 4 hours) and then progresses to longer durations (up to 12 hours) as deployment increases, mostly because longer-duration storage is currently more expensive. In 2030, annual deployment of battery storage ranges from 1 to 30 gigawatts across the scenarios. By 2050, annual deployment ranges from 7 to 77 gigawatts.
System Flexibility Key to Storage Deployment
To understand what could drive future grid-scale storage deployment, NREL modeled the techno-economic potential of storage when it is allowed to independently provide three grid services: capacity, energy time-shifting, and operating reserves.
Blue — Energy Time-Shifting & Operating Reserves (No Firm Capacity From Storage)
Black — Firm Capacity & Energy Time-Shifting (No Operating Reserves From Storage)
Green — Firm Capacity & Operating Reserves (No Energy Time-Shifting From Storage)
NREL found not allowing storage to provide firm capacity impacts future deployment the most, although not allowing firm capacity or energy time-shifting services can also substantially decrease potential deployment. Operating reserves, on the hand, do not drive the deployment of storage within the study because they find limited overall market potential for this service.
Storage and Solar Symbiosis
Multiple NREL studies have pointed to the symbiotic nature of solar and storage, and this study reinforces that relationship. More PV generation makes peak demand periods shorter and decreases how much energy capacity is needed from storage — thereby increasing the value of storage capacity and effectively decreasing the cost of storage by allowing shorter-duration batteries to be a competitive source of peaking capacity. NREL found over time the value of energy storage in providing peaking capacity increases as load grows and existing generators retire.
Solar PV generation also has a strong relationship with time-shifting services. More PV generation creates more volatile energy price profiles, increasing the potential of storage energy time-shifting. Like peaking capacity, the value of energy time-shifting grows over time with increased PV penetration.
Next Up in the Storage Futures Study
The SFS will continue to explore topics from the foundational report that outlines a visionary framework for the possible evolution of the stationary energy storage industry — and the power system as a whole.
The next report in the series will assess customer adoption potential of distributed diurnal storage for several future scenarios. The study will also include the larger impacts of storage deployment on power system evolution and operations.
Join a webinar from 9 to 10 a.m. MT on Tuesday, June 22, to learn more about SFS results with Will Frazier and Nate Blair and hear from SFS analyst Paul Denholm on the visionary framework for the possible evolution of the stationary energy storage industry, outlined in the first report in the series. Register to attend.
Rivian and VW have recently opened a partnership, despite the brands have very similar upcoming electric adventure vehicles with the Rivian R2 and VW Scout. But at a roundtable discussion with Rivian’s CEO RJ Scaringe, he said there’s more than enough room for the brands to coexist with each other.
Recent news about Rivian and VW’s software partnership, with VW investing over $5 billion into Rivian and forming a joint venture to adopt Rivian’s zonal architecture for the underpinnings of VW’s vehicle communications, has led to some interesting questions about how the details of the partnership would work out.
At the top of many people’s minds has been: isn’t it a little weird that the Rivian-like Scout brand will now essentially be competing with itself for the adventure EV market?
The question has been answered before – or perhaps more specifically non-answered – in press conferences around the official opening of the joint venture last week.
Generally, comments ran along the line of Rivian working to bring its software expertise to bear across VW’s brands, though the two companies have been a little shy to confirm whether Scout specifically would use Rivian’s software. After all, Scout is a bit of a spinoff from VW, and seems interested in showing some independence on that front, so it could be possible that they work on their own.
But in comments at a roundtable which Electrek attended today ahead of the LA Auto Show, it certainly seemed that Rivian will be working on Scout vehicles. Scaringe said that “we’re going to be supporting their full portfolio of brands – Porsche, Audi, Volkswagen, Scout.”
However, more importantly, Scaringe said that he’s “amused” by the focus that many have had on Scout, or those who consider it a potential threat to Rivian.
Scaringe estimates that there are “less than five” compelling EVs available for under $50k in the market today – and that’s perhaps being charitable. Meanwhile, if you go over to the gas world, there are gobs of choices out there for consumers, and yet they all manage to coexist without issue.
So Rivian has worked hard to distinguish itself from Tesla, for example, and thinks that even if Scout is inspired by Rivian, there’s still room for similar vehicles to coexist.
After all, there are many competing vehicles in many categories – some of which do indeed share underpinnings from separate companies. Just in the EV space, the Kia EV6 and Hyundai Ioniq 5 share a platform, and the Subaru Solterra and Toyota bZ4X are basically identical vehicles. So there has been plenty of history of companies working together to come out with similar or near-identical (rebadged) cars.
That’s not the case here, as Scout and Rivian will be very different in terms of platform and manufacturing. But sharing software shouldn’t be much of an issue – and even if we assume that Scout could cannibalize a segment of the market that Rivian otherwise had a good hold on, Rivian can still benefit from the partnership regardlessl.
Rivian’s main focus in recent years has been getting costs down. The story is that Rivian began scaling production in an extremely difficult time – trying to organize supply contracts at the historical peak of the auto industry (~2018), trying to start a manufacturing program during a global pandemic (2020/2021), and having little clout available to get on the better side of those contracts.
Now, Scaringe said, the situation is better: not only can Rivian show that it has a dominant position in its class – selling more premium SUVs than other EV and even gas brands – but it can also tout that it has support from one of the most established auto manufacturers in the world, Volkswagen. If VW – the second-largest automaker in the world – has enough faith in Rivian to invest $5.8 billion, then surely a supplier can trust that Rivian will stick around long enough to buy more than one set of parts.
Not only that, but the companies could potentially leverage their combined size for larger supply contracts. Say a certain microcontroller is needed for vehicle architecture across Rivian and also VW’s brands, then perhaps the joint venture could recognize much larger economies of scale.
The question also came up over whether Rivian might try to see if VW’s global sales network could help them to sell Rivians, but Scaringe shut that down, saying there is “no interest” in doing so. Rivian would rather stick to its plans of setting up its own stores and doing direct sales.
Charge your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*
FTC: We use income earning auto affiliate links.More.
Hyundai has officially debuted its Ioniq 9 in advance of the LA Auto Show, with a concept car-like interior that lets you swivel the 2nd row seats and turn your car into a living room.
We’ve been hearing about the Ioniq 9 for some time now, and the time has finally come for its release.
In an event in advance of the LA Auto Show, starting this Friday and with a media preview day tomorrow (which Electrek will be in attendance for), Hyundai showed off the Ioniq 9 which will officially be unveiled at the Auto Show (you can watch via livestream) on the morning of Nov 21st.
The car is what we expected – a large, 3-row SUV, much like the EV9, the Ioniq 9’s cousin that is built on the same platform by Hyundai’s sister company, Kia.
But it also has some features we didn’t expect – like a little more clarity on that “lounge-like” interior we heard about, which turns out not to just be marketing fluff at all. It actually is like a lounge, complete with la-z-boy style footrests and swiveling seats so you can face your friends. More on that in a bit.
The Ioniq 9 comes with a perhaps excessively-large 110.3kWh battery (that extra 300Wh makes a big difference), offering up to 335 miles of range on the Long-Range RWD model with 19-inch wheels. 20- and 21-inch wheels are also available, we imagine with lower ranges.
The large battery will retain the E-GMP platform’s excellent DC charging performance, with the ability to charge from 10-80% in 24 minutes, assuming you’re connected to a capable charger (Hyundai says 350kW “under optimal conditions”).
The Long-Range model will have a 160kW (215hp) rear motor, and an additional 70kW (94hp) front motor if you get the AWD model. Performance AWD will be available with 160kW motors on both axles.
The long range RWD model will do 0-100km/h (0-62mph) in 9.4 seconds, AWD in 6.7 seconds, and Performance AWD in 5.2 seconds (or, if you prefer 0-60, the Performance model can do it in 4.9).
The vehicle is large, as you’d expect out of a 3-row SUV, at 5,060mm (199.2in) long, 1,980mm (78in) wide and 1,790mm (70.5in) high. This is 2 inches longer than its sister car the EV9, and 1 inch less long than the Rivian R1S.
Exterior design keeps some of the design language of the (excellent) Ioniq 5, but larger and more rounded-off. In particular, it keeps some of the dot-matrix/pixel aesthetic of the lights.
I have to say I don’t love the roundedness of it – the design of the Ioniq 5 feels extremely consistent with a lot of straight lines throughout, whereas the rounded hood and extended rear end of the 9 spoil that consistency to some extent (and speaking of the rear… it almost seems a little hearse-like, to me).
Incidentally, with the Ioniq 5 and EV6, one is more boxy and the other is more rounded – and the same thing has happened with the Ioniq 9 and EV9, only in reverse. The Ioniq 9 is more rounded and the EV9 is more boxy. So, once again, these two similar vehicles have differentiated themselves enough that we expect the market will be split, with many customers liking one and disliking the other, meaning little cannibalization between the two.
The interior seems incredibly spacious, though so far we haven’t had a chance to experience it ourselves. Most 3-row SUVs in this size class do have somewhat cramped third rows, so we’re curious if Hyundai has managed to do some sort of magic in that respect.
And in addition to rear and frunk storage (with a frunk capable of holding 88L in RWD and 52L in AWD models), the center console offers a large amount of storage inside (18.2L, split between an upper and lower tray), and can be slid back and forth to allow easier movement between front or rear seats.
And speaking of magic, Hyundai has actually done something new here – an interior with swiveling middle seats, to turn the car into a lounge.
We’ve seen similar interiors on countless concept cars, but understandably they never make it to production. It’s definitely an attention-grabbing feature, but who really uses their vehicles like that?
Well, Hyundai thinks that people will, so it’s offered swiveling 2nd-row seats to allow for this. However, it says that these seats will be available “in selected markets only,” and it has declined to say exactly which markets those are yet. We also imagine this will only apply to the 6-seat configuration, rather than 7-seat.
The seats don’t just swivel though, they also recline and have a leg rest. Hyundai is calling these its “Relaxation Seats,” and the first and second row seats will both be capable of this feat. It says this will be particularly useful for people who want to get comfortable during vehicle charging (though, on an optimal 350kW charger, 24 minutes is hardly much time for a nap).
And that charging will be accomplished via a NACS port – making this, we think, the first non-Tesla vehicle to debut and be sold with only a NACS port at any time in the model’s existence. Other E-GMP vehicles are switching over to NACS, but the Ioniq 5 for example has been out for many years now, so there are lots of CCS Ioniq 5s out there, but that won’t be the case for the Ioniq 9.
Like other E-GMP vehicles, it will be able to discharge the battery via vehicle-to-load (V2L) to power devices, though we didn’t get clarity on how much total output it will have. Other E-GMP cars usually top out around 1.8kW, so enough to run some regular outlets, but not enough to power a house.
The Hyundai Ioniq 9 will be available in Korea and the US in the first half of 2025, and then will come to Europe and other markets later. The US version will be built at Hyundai’s plant in Georgia – another example of a car brought to the US by the domestic sourcing provisions of President Biden’s EV push (and which could be put into Jeopardy if Dumb & Dumber get their way in attempting to kill this boon for US manufacturing).
We don’t have pricing or all tech specs yet, so stay tuned as there’s still more to come.
Also, you can watch the official debut livestream over at Hyundai’s website, starting at 9:10am PST November 21st. And Electrek will be at the LA Auto Show to ask around and see if we can get any lingering questions answered.
Charge your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*
FTC: We use income earning auto affiliate links.More.
Honda has been promising to unlock the power of all-solid-state EV batteries for several years. Today, we are getting our first look at the progress. Honda unveiled a demonstration production line as it continues to advance promising new battery technology.
By 2050, Honda wants all its products and corporate activities to be carbon neutral. Although electric vehicles are essential to this mission, Honda believes improvements are needed.
Since the battery is such a critical component for EVs, the company aims to unlock more driving range at a lower cost with new chemistries.
Honda is developing all-solid-state EV batteries in-house to power up its next-gen vehicles. It’s not “merely trying to establish a lab-level technology,” Honda is eyeing mass production in the coming years.
On Wednesday, Honda unveiled its demonstration production line for all-solid-state EV batteries, giving us our first look at the progress.
The line is located at Honda’s R&D facility in Sakura City, Tochigi Prefecture, Japan. Honda will use the demo line as a preface for mass production while determining the basic specifications of the battery cells.
Honda’s new facility where the all-solid-state EV battery demo production line is located (Source: Honda)
Honda is launching EVs with all-solid-state batteries
Honda plans to launch electric models with the new all-solid-state battery tech in the “second half of the 2020s.”
The new demo line replicates the processes required for mass production. It covers around 295,000 ft2 (27,400 m2) and is already equipped with the tools to verify each production process, including weighing and mixing electrode materials, coating, and roll pressing electrode assemblies. The line also supports the formation of cells and the assembly of the module.
After the new facility was completed this spring, all the equipment needed for verification is now in place.
Honda plans to begin production on the new demo line in January 2025. With a highly efficient production process and a wide range of use cases, including automobiles, motorcycles, and aircraft, Honda aims to slash battery costs.
To speed up development, Honda is conducting “speedy research” in two main areas: material specifications and manufacturing methods.
Ahead of its 2050 carbon neutrality target, Honda aims for 100% of global vehicle sales to be EV or FCEV by 2040. Honda believes the new battery tech will be its differentiator.
FTC: We use income earning auto affiliate links.More.