Connect with us

Published

on

With declining technology costs and increasing renewable deployment, energy storage is poised to be a valuable resource on future power grids — but what is the total market potential for storage technologies, and what are the key drivers of cost-optimal deployment?

In the latest report from the Storage Futures Study (SFS), Economic Potential of Diurnal Storage in the U.S. Power Sector, NREL analysts Will Frazier, Wesley Cole, Paul Denholm, Scott Machen, and Nate Blair, describe significant market potential for utility-scale diurnal storage (up to 12 hours) in the U.S. power system through 2050. They found storage adds the most value to the grid and deployment increases when the power system allows storage to simultaneously provide multiple grid services and when there is greater solar photovoltaic (PV) penetration.

“We find significant market potential for diurnal energy storage across a variety of modeled scenarios, mostly occurring by 2030,” said Will Frazier, National Renewable Energy Laboratory (NREL) analyst and lead author of the report. “To realize cost-optimal storage deployment, the power system will need to allow storage to provide capacity and energy time-shifting grid services.”

The SFS — led by NREL and supported by the U.S. Department of Energy’s (DOE’s) Energy Storage Grand Challenge — is a multiyear research project to explore how advancing energy storage technologies could impact the deployment of utility-scale storage and adoption of distributed storage, including impacts to future power system infrastructure investment and operations.

Expanded Capabilities to Model Storage Potential

For this work, researchers added new capabilities to NREL’s Regional Energy Deployment System (ReEDS) capacity expansion model to accurately represent the value of diurnal battery energy storage when it is allowed to provide grid services — an inherently complex modeling challenge. Cost and performance metrics focus on Li-ion batteries because the technology has more market maturity than other emerging technologies. Because the value of storage depends greatly on timing, ReEDS simulated system operations every hour.

NREL researchers used ReEDS to model two sets of scenarios — one that allows storage to provide multiple grid services and one that restricts the services that storage can provide. All the scenarios use different cost and performance assumptions for storage, wind, solar PV, and natural gas to determine the key drivers of energy storage deployment.

Installed Storage Capacity Could Increase Five-Fold by 2050

Across all scenarios in the study, utility-scale diurnal energy storage deployment grows significantly through 2050, totaling over 125 gigawatts of installed capacity in the modest cost and performance assumptions — a more than five-fold increase from today’s total. Depending on cost and other variables, deployment could total as much as 680 gigawatts by 2050.

Chart courtesy of NREL — grid-scale U.S. storage capacity could grow five-fold by 2050.

Chart courtesy of NREL — grid-scale U.S. storage capacity could grow five-fold by 2050.

“These are game-changing numbers,” Frazier said. “Today we have 23 gigawatts of storage capacity, all of which is pumped-hydro.”

Initially, the new storage deployment is mostly shorter duration (up to 4 hours) and then progresses to longer durations (up to 12 hours) as deployment increases, mostly because longer-duration storage is currently more expensive. In 2030, annual deployment of battery storage ranges from 1 to 30 gigawatts across the scenarios. By 2050, annual deployment ranges from 7 to 77 gigawatts.

System Flexibility Key to Storage Deployment

To understand what could drive future grid-scale storage deployment, NREL modeled the techno-economic potential of storage when it is allowed to independently provide three grid services: capacity, energy time-shifting, and operating reserves.

  • Blue — Energy Time-Shifting & Operating Reserves (No Firm Capacity From Storage)
  • Black — Firm Capacity & Energy Time-Shifting (No Operating Reserves From Storage)
  • Green — Firm Capacity & Operating Reserves (No Energy Time-Shifting From Storage)

NREL found not allowing storage to provide firm capacity impacts future deployment the most, although not allowing firm capacity or energy time-shifting services can also substantially decrease potential deployment. Operating reserves, on the hand, do not drive the deployment of storage within the study because they find limited overall market potential for this service.

Storage and Solar Symbiosis

Multiple NREL studies have pointed to the symbiotic nature of solar and storage, and this study reinforces that relationship. More PV generation makes peak demand periods shorter and decreases how much energy capacity is needed from storage — thereby increasing the value of storage capacity and effectively decreasing the cost of storage by allowing shorter-duration batteries to be a competitive source of peaking capacity. NREL found over time the value of energy storage in providing peaking capacity increases as load grows and existing generators retire.

Solar PV generation also has a strong relationship with time-shifting services. More PV generation creates more volatile energy price profiles, increasing the potential of storage energy time-shifting. Like peaking capacity, the value of energy time-shifting grows over time with increased PV penetration.

Next Up in the Storage Futures Study

The SFS will continue to explore topics from the foundational report that outlines a visionary framework for the possible evolution of the stationary energy storage industry — and the power system as a whole.

The next report in the series will assess customer adoption potential of distributed diurnal storage for several future scenarios. The study will also include the larger impacts of storage deployment on power system evolution and operations.

Visit the Storage Futures Study page for more information about the broader study, and learn more about NREL’s energy analysis research.

Learn More in June 22 Webinar

Join a webinar from 9 to 10 a.m. MT on Tuesday, June 22, to learn more about SFS results with Will Frazier and Nate Blair and hear from SFS analyst Paul Denholm on the visionary framework for the possible evolution of the stationary energy storage industry, outlined in the first report in the series. Register to attend.

Article courtesy of NREL, the U.S. Department of Energy.

Image courtesy of 8minute Solar Energy, plus Energy storage project.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Weird Alibaba: An inflatable Chinese electric jet ski for $2,000 – What’s the catch?

Published

on

By

Weird Alibaba: An inflatable Chinese electric jet ski for ,000 - What's the catch?

As usual for entries in this Awesomely Weird Alibaba Electric Vehicle of the Week column, the fun EVs we dredge up tend to bridge the gap between fun-looking and palm sweat-inducing. Would you take a cheap inflatable electric jet ski out into the bay or off the coast? What if I told you that you had to build it yourself?

That appears to be the case here with this week’s find. It’s an inflatable vessel that is jet ski shaped, though I’m not sure it fulfills all of the requirements to become a jet ski – namely the water jet turbine.

In fact, there’s actually no motor at all. It seems to be just the 3.5 meter (11 ft) boat itself, but at least it comes with a convenient transom in back to mount your own motor.

And in our case, we can slap on an electric outboard to turn this thing into not just a bad idea on water, but a green bad idea on water.

If you really wanted to stay true to the advertising, you could actually get an electrically powered jet ski-style water turbine to add to this boat. Amazon can hook you up with an impressive offering that looks like it would require cutting an inlet hole in the bottom of the boat and an exit somewhere through the rear transom.

Short of building a true jet ski though, I think an overpowered trolling motor will probably suffice. The vendor for the motor linked above seems to propose that is equivalent to 10 hp, which sounds reasonable for a small watercraft like this.

Technically the motor is only rated at 2.2 kW, which is around 3 hp. But we generally find that small electric outboards offer performance of around 3x the rated power of combustion engine outboards due to their much higher torque. It may not rip as fast as the larger gas engine below, but then again maybe it will. Who knows until we find out ourselves?!

You’ll need a whopping 60V of battery for that awesome little electric outboard, which I’m hoping will fit either under the seat or under the “hood” of the jet ski.

I’d actually be pretty interested to get a look under that hood to see what’s going on with that steering wheel. Since the jet ski/inflatable boat seems to be set up for a transom-mounted trolling motor, I don’t know how they expect to tie in steering linkage to something like that.

But my past experience of buying electric boats on Alibaba has taught me to never discount the ingenuity of East Asian engineers building low-cost vehicles that will presumably hold the life of one or more people in their hands.

chinese electric jet ski

One thing is for sure: At around $2k, this will definitely be the cheapest new jet ski you could buy, electric or otherwise. Personal watercraft aren’t cheap, and the electric ones carry a significant premium.

But if you’re handy, don’t mind wiring up a motor and battery yourself, and also don’t mind a steering wheel for show while you twist around to control a tiller motor, then you just might wind up with one of the most unique vessels on your local lake or river.

And consider the ease of transport! You probably don’t even need a trailer like you would for a traditional jet ski. The entire thing weighs just 176 kg (388 lb), though the spec sheet also says it is made from fiberglass, so perhaps the data isn’t quite accurate. Either way, this inflatable vessel can’t weigh too much. And the fact that you can deflate it to fit in the back of a van or SUV is a big benefit too. Or you can just leave it inflated and probably fit it in a truck with the tail gate down. Not my mini-truck, but maybe your truck.

At $2,025 for this thing, it’s pretty darn cheap – though that’s before the cost of batteries and a motor. Don’t forget though that there’d be several thousand dollars in shipping costs, customs import charges, taxes, broker fees, etc. Also, don’t forget that you should absolutely not buy this thing. While I’ve picked up some cool and weird little EVs from Alibaba over the years, it’s never a good idea. The process is long and complicated, not to mention fraught with extra charges at every step of the way. And you never know if the company who just received your wire transfer is even going to deliver your product in the end, which is just another fun little stressor that comes with shopping on Alibaba. So please, don’t join the ranks of my foolish readers and risk your hard earned money on something weird like this.

But if you ignore my warnings and decide to go for it, be sure to let me know what happened! And maybe update your will before the maiden voyage.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Here are the best April Fool’s jokes from the e-bike industry this year

Published

on

By

Here are the best April Fool's jokes from the e-bike industry this year

April Fool’s Day, celebrated annually on the first of April, is usually a light-hearted and mischievous occasion marked by good-natured pranks, hoaxes, and jokes. Large organizations often take part in hoodwinking others, creating an atmosphere of amusement and (hopefully) harmless trickery. Sure, it’s annoying when you fall for it. But it’s also humorous to see what companies can come up with next. E-bike companies and the larger micromobility industry often have fun getting in touch with their inner prankster (remember the pedal-powered popemobile?!), and this year was no exception. These are some of the fun and light-hearted new announcements from around the electric biking and micromobility world.

We’ll keep updating as we find more, and feel free to send me any you find today (contact info in my author blurb below the article).

Magnum’s human-powered bike

Here in the e-bike industry we are often so deeply focused on the latest batteries or the most innovative new motors that we can sometimes forget our roots. Magnum Bikes, a popular electric bike company, wants to make sure we all remember where we came from with the “launch” of its new human-powered electric bike.

Called the Navigator Infinite, Magnum says the bike can get over 100 miles (160 km) of range. I guess “infinite” truly is at least 100!

Muc-Off releases intimate lube

Muc-Off is a brand of bike cleaning products that is known for, among other things, its various bike lubricants.

I’ve tested the company’s bike cleaners as well as their dry and wet chain lube for different riding conditions.

But now the company is apparently branching out into another industry that is slightly more, err…. intimate.

With the release of personal lubricant for adult activities, Muc-Off wants to be there for you no matter what you’re riding.

Though perhaps the company put it best, explaining that they “worked long and hard to develop a deep penetrating lubricant that fills that sweet spot between smoothness and abrasion. With our bicycle lubes the target is to hit zero friction, but following round, after round, after round of internal tests, we found friction to be vital in achieving a satisfactory outcome.

Well there you go.

Charge your electric car with pedal power

If you thought traditional fast chargers were just too darn slow, then FastNed says they have the solution. And it just so happens to be connected to your feet.

The company is touting its new 750 kW fast charger known as Bike Boost that is powered by pedaling. They claim it can fill your electric car’s battery in just 5 minutes.

That’s more than just a Wheaties breakfast… that must require eating an entire truck of Wheaties!

Radio Flyer’s new air travel

We’ve been more attracted to Radio Flyer’s electric bikes lately, but perhaps it’s time to rethink travel by wheel. Instead, Radio Flyer has announced a new air service known as Radio FlyAir.

It’s not just a Radio Flyer jet though. The entire airline seems to have gotten the red wagon treatment, complete with wagon luggage carriers and kids riding through the terminal.

The best e-bike April Fools prank of all time?

Try as they might, I’m not sure any company will top what I believe to be the best April Fools product launch of all time: The RadFit from Rad Power Bikes.

Just as electric bikes have revolutionized the bike industry, so too can they upend the stationary exercise bike industry. At least that’s what Rad suggested with its electric stationary bike.

I don’t want to butcher this one, so just watch the short video below for the full effect. I promise that it’s worth it.

Lead image credit: ETA

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Scientists have found major storage capacity in water-based batteries

Published

on

By

Scientists have found major storage capacity in water-based batteries

Texas A&M University scientists have been working with metal-free, water-based battery electrodes, and they’re finding that the difference in energy storage capacity is as much as 1,000%.

How the water-based batteries work

In the scientists’ paper, published in Nature Materials this week, the water-based, or aqueous, batteries consist of a cathode – the negatively charged electrode; an anode – the positively charged electrode; and an electrolyte, like traditional batteries. But in this water-based battery, the cathodes and anodes are polymers that can store energy, and the electrolyte is water mixed with organic salts.

The electrolyte transfers the ions – the charge-carrying particles – back and forth between the cathode and the anode, and the electrolyte is also key to energy storage through its interactions with the electrode.

Chemical engineering professor and co-author Dr. Jodie Lutkenhaus asserts:

If an electrode swells too much during cycling, then it can’t conduct electrons very well, and you lose all the performance.

I believe there is a 1,000% difference in energy storage capacity, depending on the electrolyte choice because of swelling effects.

According to their paper, the electrodes – the “redox-active non-conjugated radical polymers” – are promising candidates for water-based batteries because of the polymers’ high discharge voltage and fast redox kinetics.

However, the researchers note in their paper’s abstract:

[L]ittle is known regarding the energy storage mechanism of these polymers in an aqueous environment. The reaction itself is complex and difficult to resolve because of the simultaneous transfer of electrons, ions, and water molecules. 

The future of aqueous batteries

The researchers suggest that water-based batteries might be able to mitigate potential shortages of metals such as cobalt and lithium, as well as eliminate the potential for battery fires.

Lutkenhaus continued:

There would be no battery fires anymore because it’s water-based.

In the future, if materials shortages are projected, the price of lithium-ion batteries will go way up. If we have this alternative battery, we can turn to this chemistry, where the supply is much more stable because we can manufacture them here in the United States and materials to make them are here.

The researchers also conducted computational simulation and analysis, and they’ll carry out further simulations to better understand the theory.

Chemistry assistant professor and co-author Dr. Daniel Tabor said:

With this new energy storage technology, this is a push forward to lithium-free batteries. We have a better molecular level picture of what makes some battery electrodes work better than others, and this gives us strong evidence of where to go forward in materials design.

Read more: A Mars rover scientist is about to scale carbon-oxygen batteries

Photo: Texas A&M Engineering



UnderstandSolar is a free service that links you to top-rated solar installers in your region for personalized solar estimates. Tesla now offers price matching, so it’s important to shop for the best quotes. Click here to learn more and get your quotes. — *ad
.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending