Connect with us

Published

on

For Greg Glatzmaier, the road between innovation and implementation runs along a dusty stretch of highway about a dozen miles south of Boulder City, Nevada, where his patented idea could solve an industry problem. The destination for his idea is Nevada Solar One, an outpost in the desert where 186,000 parabolic shaped mirrors tilt to capture the sun’s rays.

Greg Glatzmaier tests the high-temperature thermal/mechanical stability of sealants that are being used in equipment installed at the Nevada Solar One power plant. The process reduces trace levels of hydrogen in the power plant and maintains its original design efficiency and power production. Photo by Dennis Schroeder, NREL

“When the plant first opened, there was nothing around it but open desert with mountains to the west and east,” said Glatzmaier, a senior engineer in the Thermal Energy Science and Technologies group at the National Renewable Energy Laboratory (NREL). “The only other landscape feature is a dry lakebed north of the plant.”

Since Nevada Solar One began operations in the summer of 2007, other utility-scale solar power plants have opened in that lakebed. Nevada Solar One is the only concentrating solar power (CSP) plant in the region, however, and the technology faces a unique set of challenges.

The CSP facility uses concentrated beams of sunlight to heat a fluid flowing through 20,000 tubes to as high as 752 degrees Fahrenheit. The process creates steam to spin a turbine that powers a generator and produces electricity. Over time, however, the heat transfer fluid begins to break down and form hydrogen, which reduces the effectiveness of the process. Tiny metal pellets in the tubes absorb the hydrogen, but after about seven years they become saturated and cannot be removed and replaced. Glatzmaier developed a method to address the hydrogen problem.

“To try to go in individually and address the situation for each tube is not really practical,” Glatzmaier said. “So, the method that I’ve developed, and what’s in that patent, and what this project has been all about, is to reduce and control the level of hydrogen that’s in the heat transfer fluid.”

NREL applied for a patent on Glatzmaier’s invention in the fall of 2017. The U.S. Patent and Trademark Office last May granted patent protection to what is simply called “Hydrogen sensing and separation.”

Laboratory Filed 188 Patent Applications

Glatzmaier’s patent was merely one of the 40 U.S. patents issued to NREL during fiscal 2020, a bump from the 32 issued during the prior fiscal year. Of the 269 disclosures filed with the laboratory’s Technology Transfer Office as the first step toward either patent or copyright protection, 153 fell in the category of a record of invention and 116 in the area of software.

“We continue to see strong engagement from researchers who submit their ideas for evaluation, with especially strong growth in software,” said Anne Miller, director of NREL’s Technology Transfer Office. “It’s great to see such growth because it tells us that the outreach to the lab to get people to report their innovations and work with us in getting them protected and deployed means that it’s working, that people know who to contact. Hopefully, it means that they have some confidence in our ability to be helpful and steer them in the right direction.”

Anne Miller, director of NREL’s Technology Transfer Office, speaks to laboratory employees at a 2019 event. Photo by Werner Slocum, NREL.

NREL filed 188 patent applications in FY20, up from 124 the year before.

Lance Wheeler, a research scientist at NREL, has about a dozen patent applications in the pipeline tied to the discovery several years ago of a way to turn windows into solar cells. The technology relies on perovskite solar cells that enable the glass to darken and generate electricity, and also switch back to a clear pane. The most recent patent approved, for “Energy-harvesting chromogenic devices,” was granted in November, or almost four years after the provisional application was filed.

“It’s much different than writing a paper because you can write a paper and get it published within months,” said Wheeler, who shares credit on the patent with colleagues Joey Luther, Jeffrey Christians, and Joe Berry. “You’ll never get a patent awarded in months. It’s usually at least a year, and three is not crazy.”

Buildings across the United States account for nearly two-thirds of energy used, so the notion of using these “smart windows” to take advantage of sunlight could bring that energy consumption down.

The patents issued so far for Wheeler’s dynamic photovoltaic windows cover foundational aspects of the technology and sprang from the initial research. A series of patent applications followed.

“When you write the first patent application, you don’t know everything,” Wheeler said. “As you learn more and especially for very particular market needs, or what a product might look like, you learn what’s important and you continue to protect the things that are working. Then you make more discoveries, and you patent more things, but they’re all aligned in the same area.”

Perovskite Composition Earns Patent Protection

Alignment, as it turns out, is a key part of making perovskites most effective in capturing the sun’s energy. Unlike widely used silicon, which is a naturally occurring mineral, perovskites used in solar cells are grown through chemistry. The crystalline structure of perovskites has proven exceptionally efficient at converting sunlight to electricity.

NREL researchers have explored possible combinations for perovskite formulas to find the best. That work resulted in a patent issued in April 2020 for “Oriented perovskite crystals and methods for making the same.” The process begins with a small crystal that’s attached to another crystal and then another and on and on. The crystals are also oriented in the same direction. Kai Zhu, a senior scientist and one of the inventors, uses bricklaying as an analogy.

“You lay one layer down, you put one next to another, you align them perfectly,” he said. “You have to do this in order to build a very large wall. But if you have some randomness in it, your wall will collapse.”

The patent, which covers the composition of the perovskite, was issued to Zhu, Berry, and Donghoe Kim of NREL and to a scientist in Japan. NREL filed the patent application in 2017. Compared to a perovskite solar cell made of crystals allowed to grow randomly instead of in a specific orientation, the NREL-developed composition has been proven to have fewer defects and able to move charge carriers quickly. The result is a perovskite solar cell capable of reaching the highest efficiency.

“This represents the current best performing perovskite composition for the single-junction solar cell,” Zhu said.

Software Filings Reach New Record

NREL’s Technology Transfer Office received 116 software record (SWR) disclosures in fiscal 2020, establishing a new record and marking a big increase from 72 the prior year. The growth in submittals is partly due to more software being developed and authorized for free open-source release. One software record approved for closed-source licensing last year and now available for commercial users is the Electric Vehicle Infrastructure Projection tool, or EVI-Pro. A simplified, open-source version, known as EVI-Pro Lite, also has been released.

The core of EVI-Pro allows users to forecast the demand for electric vehicle charging infrastructure in a particular area. The predictive nature of the software also enables users to determine in advance how an influx of electric vehicles might affect the grid and energy demand. EVI-Pro relies on real-world information.

Eric Wood, the NREL researcher who oversaw the development of EVI-Pro, said it is not enough to simply consider how many charging stations were installed in an area previously and make an educated guess based on that information.

“That misses some key points,” he said. “The vehicle technology is evolving. The charging technology is evolving. And the behavior of individuals that own these vehicles is evolving.”

Early adopters of electric vehicles could charge them at home, in their garage. As the market expands, Wood said, people living in apartments or who have to park on the street need to have a place to plug in.

“The role of public charging infrastructure is going to continue to elevate as the market grows,” he said. “Continuing to develop the software with an eye on reflecting the latest situation in the market is one of the challenges that we face, so keeping EVI-Pro relevant and current is important.”

From the Laboratory to the Outside World

For Glatzmaier, the journey to see how well his invention could perform at isolating and removing hydrogen from the concentrating solar power plant was not a quick one. Grounded from flying because of the pandemic, last year he made four trips to the Nevada site by car. Each trip took about 13 hours one way.

Scientists typically keep close to their laboratory space, with companies able to license ideas that sprang from the inventive minds at NREL. Often, with license in hand, a company will conduct research using its own people. In Glatzmaier’s case, Nevada Solar One signed cooperative research and development agreements that have kept the scientist and company working closely together since 2015.

Glatzmaier initially planned to address the hydrogen buildup using two processes: one to measure the amount of the gas, and a second to extract it. Laboratory-scale tests showed his ideas would work, but he still expected some hesitation from company executives when it came time to trying out the devices on a much larger scale.

“I was thinking, they’re going to be very reluctant because companies tend to not want to make changes to their power plants once they are up and running,” he said. So he proposed installing the mechanism to only measure hydrogen buildup. Instead, the company wanted him to move ahead and tackle both problems at once. From the initial idea to installation has been a long road, but it does not end in Nevada.

Glatzmaier said 80 concentrating solar power plants exist around the world, and talks are in their final stages to license the technology for its use in these plants.

Learn more about licensing NREL-developed technologies.

—Wayne Hicks

Article courtesy of the NREL, The U.S. Department of Energy.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla, Trump alliance falls apart – but there’s BIG news for electric semi fleets

Published

on

By

Tesla, Trump alliance falls apart – but there's BIG news for electric semi fleets

After a month off trying to wrap our heads around all the chaos surrounding EVs, solar, and everything else in Washington, we’re back with the biggest EV news stories of the day from Tesla, Ford, Volvo, and everyone else on today’s hiatus-busting episode of Quick Charge!

It just gets worse and worse for the Tesla true believers – especially those willing to put their money where Elon’s mouth is! One believer is set to lose nearly $50,000 betting on Tesla’s ability to deliver a Robotaxi service by the end of June (didn’t happen), and the controversial CEO’s most recent spat with President Trump had TSLA down nearly 5% in pre-morning trading.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Advertisement – scroll for more content

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai is about to reveal a new EV and it could be the affordable IONIQ 2

Published

on

By

Hyundai is about to reveal a new EV and it could be the affordable IONIQ 2

Hyundai is getting ready to shake things up. A new electric crossover SUV, likely the Hyundai IONIQ 2, is set to debut in the coming months. It will sit below the Kona Electric as Hyundai expands its entry-level EV lineup.

Is Hyundai launching the IONIQ 2 in 2026?

After launching the Inster late last year, Hyundai is already preparing to introduce a new entry-level EV in Europe.

Xavier Martinet, President and CEO of Hyundai Europe, confirmed that the new EV will be revealed “in the next few months.” It will be built in Europe and scheduled to go on sale in mid-2026.

Hyundai’s new electric crossover is expected to be a twin to the Kia EV2, which will likely arrive just ahead of it next year.

Advertisement – scroll for more content

It will be underpinned by the same E-GMP platform, which powers all IONIQ and Kia EV models (EV3, EV4, EV5, EV6, and EV9).

Like the Kia EV3, it will likely be available with either a 58.3 kWh or 81.4 kWh battery pack option. The former provides a WLTP range of 267 miles while the latter is rated with up to 372 miles. All trims are powered by a single electric motor at the front, producing 201 hp and 209 lb-ft of torque.

Kia-EV2
Kia EV2 Concept (Source: Kia)

Although it may share the same underpinnings as the EV2, Hyundai’s new entry-level EV will feature an advanced new software and infotainment system.

According to Autocar, the interior will represent a “step change” in terms of usability and features. The new system enables new functions, such as ambient lighting and sounds that adjust depending on the drive mode.

Hyundai-IONIQ-2-EV
Hyundai E&E tech platform powered by Pleos (Source: Hyundai)

It’s expected to showcase Hyundai’s powerful new Pleos software and infotainment system. As an end-to-end software platform, Pleos connects everything from the infotainment system (Pleos Connect) to the Vehicle Operating System (OS) and the cloud.

Pleos is set to power Hyundai’s upcoming software-defined vehicles (SDVs) with new features like autonomous driving and real-time data analysis.

Hyundai-new-Pleos-OS
Hyundai’s next-gen infotainment system powered by Pleos (Source: Hyundai)

As an Android-based system, Pleos Connect features a “smartphone-like UI” with new functions including multi-window viewing and an AI voice assistant.

The new electric crossover is expected to start at around €30,000 ($35,400), or slightly less than the Kia EV3, priced from €35,990 ($42,500). It will sit between the Inster and Kona Electric in Hyundai’s lineup.

Hyundai said that it would launch the first EV with its next-gen infotainment system in Q2 2026. Will it be the IONIQ 2? Hyundai is expected to unveil the new entry-level EV at IAA Mobility in September. Stay tuned for more info. We’ll keep you updated with the latest.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla unveils its LFP battery factory, claims it’s almost ready

Published

on

By

Tesla unveils its LFP battery factory, claims it's almost ready

Tesla has unveiled its lithium-iron-phosphate (LFP) battery cell factory in Nevada and claims that it is nearly ready to start production.

Like several other automakers using LFP cells, Tesla relies heavily on Chinese manufacturers for its battery cell supply.

Tesla’s cheapest electric vehicles all utilize LFP cells, and its entire range of energy storage products, Megapacks and Powerwalls, also employ the more affordable LFP cell chemistry from Chinese manufacturers.

This reliance on Chinese manufacturers is less than ideal and particularly complicated for US automakers and battery pack manufacturers like Tesla, amid an ongoing trade war between the US and virtually the entire world, including China.

Advertisement – scroll for more content

As of last year, a 25% tariff already applied to battery cells from China, but this increased to more than 80% under Trump before he paused some tariffs on China. It remains unclear where they will end up by the time negotiations are complete and the trade war is resolved, but many expect it to be higher.

Prior to Trump taking power, Tesla had already planned to build a small LFP battery factory in the US to avoid the 25% tariffs.

The automaker had secured older manufacturing equipment from one of its battery cell suppliers, CATL, and planned to deploy it in the US for small-scale production.

Tesla has now released new images of the factory in Nevada and claimed that it is “nearing completion”:

Here are a few images from inside the factory (via Tesla):

Previous reporting stated that Tesla aims to produce about 10 GWh of LFP battery cells per year at the new factory.

The cells are expected to be used in Tesla’s Megapack, produced in the US. Tesla currently has a capacity to produce 40 GWh of Megapacks annually at its factory in California. The company is also working on a new Megapack factory in Texas.

Ford is also developing its own LFP battery cell factory in Michigan, but this facility is significantly larger, with a planned production capacity of 35 GWh.

Electrek’s Take

It’s nice to see this in the US. LFP was a US/Canada invention, with Arumugam Manthiram and John B. Goodenough doing much of the early work, and researchers in Quebec making several contributions to help with commercialization.

But China saw the potential early and invested heavily in volume manufacturing of LFP cells and it now dominates the market.

Tesla is now producing most of its vehicles with LFP cells and all its stationary energy storage products.

It makes sense to invest in your own production. However, Tesla is unlikely to catch up to BYD and CATL, which dominate LFP cell production.

The move will help Tesla avoid tariffs on a small percentage of its Megapacks produced in the US. Ford’s effort is more ambitious.

It’s worth noting that both Ford’s and Tesla’s LFP plants were planned before Trump’s tariffs, which have had limited success in bringing manufacturing back to the US.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending