Connect with us

Published

on

For Greg Glatzmaier, the road between innovation and implementation runs along a dusty stretch of highway about a dozen miles south of Boulder City, Nevada, where his patented idea could solve an industry problem. The destination for his idea is Nevada Solar One, an outpost in the desert where 186,000 parabolic shaped mirrors tilt to capture the sun’s rays.

Greg Glatzmaier tests the high-temperature thermal/mechanical stability of sealants that are being used in equipment installed at the Nevada Solar One power plant. The process reduces trace levels of hydrogen in the power plant and maintains its original design efficiency and power production. Photo by Dennis Schroeder, NREL

“When the plant first opened, there was nothing around it but open desert with mountains to the west and east,” said Glatzmaier, a senior engineer in the Thermal Energy Science and Technologies group at the National Renewable Energy Laboratory (NREL). “The only other landscape feature is a dry lakebed north of the plant.”

Since Nevada Solar One began operations in the summer of 2007, other utility-scale solar power plants have opened in that lakebed. Nevada Solar One is the only concentrating solar power (CSP) plant in the region, however, and the technology faces a unique set of challenges.

The CSP facility uses concentrated beams of sunlight to heat a fluid flowing through 20,000 tubes to as high as 752 degrees Fahrenheit. The process creates steam to spin a turbine that powers a generator and produces electricity. Over time, however, the heat transfer fluid begins to break down and form hydrogen, which reduces the effectiveness of the process. Tiny metal pellets in the tubes absorb the hydrogen, but after about seven years they become saturated and cannot be removed and replaced. Glatzmaier developed a method to address the hydrogen problem.

“To try to go in individually and address the situation for each tube is not really practical,” Glatzmaier said. “So, the method that I’ve developed, and what’s in that patent, and what this project has been all about, is to reduce and control the level of hydrogen that’s in the heat transfer fluid.”

NREL applied for a patent on Glatzmaier’s invention in the fall of 2017. The U.S. Patent and Trademark Office last May granted patent protection to what is simply called “Hydrogen sensing and separation.”

Laboratory Filed 188 Patent Applications

Glatzmaier’s patent was merely one of the 40 U.S. patents issued to NREL during fiscal 2020, a bump from the 32 issued during the prior fiscal year. Of the 269 disclosures filed with the laboratory’s Technology Transfer Office as the first step toward either patent or copyright protection, 153 fell in the category of a record of invention and 116 in the area of software.

“We continue to see strong engagement from researchers who submit their ideas for evaluation, with especially strong growth in software,” said Anne Miller, director of NREL’s Technology Transfer Office. “It’s great to see such growth because it tells us that the outreach to the lab to get people to report their innovations and work with us in getting them protected and deployed means that it’s working, that people know who to contact. Hopefully, it means that they have some confidence in our ability to be helpful and steer them in the right direction.”

Anne Miller, director of NREL’s Technology Transfer Office, speaks to laboratory employees at a 2019 event. Photo by Werner Slocum, NREL.

NREL filed 188 patent applications in FY20, up from 124 the year before.

Lance Wheeler, a research scientist at NREL, has about a dozen patent applications in the pipeline tied to the discovery several years ago of a way to turn windows into solar cells. The technology relies on perovskite solar cells that enable the glass to darken and generate electricity, and also switch back to a clear pane. The most recent patent approved, for “Energy-harvesting chromogenic devices,” was granted in November, or almost four years after the provisional application was filed.

“It’s much different than writing a paper because you can write a paper and get it published within months,” said Wheeler, who shares credit on the patent with colleagues Joey Luther, Jeffrey Christians, and Joe Berry. “You’ll never get a patent awarded in months. It’s usually at least a year, and three is not crazy.”

Buildings across the United States account for nearly two-thirds of energy used, so the notion of using these “smart windows” to take advantage of sunlight could bring that energy consumption down.

The patents issued so far for Wheeler’s dynamic photovoltaic windows cover foundational aspects of the technology and sprang from the initial research. A series of patent applications followed.

“When you write the first patent application, you don’t know everything,” Wheeler said. “As you learn more and especially for very particular market needs, or what a product might look like, you learn what’s important and you continue to protect the things that are working. Then you make more discoveries, and you patent more things, but they’re all aligned in the same area.”

Perovskite Composition Earns Patent Protection

Alignment, as it turns out, is a key part of making perovskites most effective in capturing the sun’s energy. Unlike widely used silicon, which is a naturally occurring mineral, perovskites used in solar cells are grown through chemistry. The crystalline structure of perovskites has proven exceptionally efficient at converting sunlight to electricity.

NREL researchers have explored possible combinations for perovskite formulas to find the best. That work resulted in a patent issued in April 2020 for “Oriented perovskite crystals and methods for making the same.” The process begins with a small crystal that’s attached to another crystal and then another and on and on. The crystals are also oriented in the same direction. Kai Zhu, a senior scientist and one of the inventors, uses bricklaying as an analogy.

“You lay one layer down, you put one next to another, you align them perfectly,” he said. “You have to do this in order to build a very large wall. But if you have some randomness in it, your wall will collapse.”

The patent, which covers the composition of the perovskite, was issued to Zhu, Berry, and Donghoe Kim of NREL and to a scientist in Japan. NREL filed the patent application in 2017. Compared to a perovskite solar cell made of crystals allowed to grow randomly instead of in a specific orientation, the NREL-developed composition has been proven to have fewer defects and able to move charge carriers quickly. The result is a perovskite solar cell capable of reaching the highest efficiency.

“This represents the current best performing perovskite composition for the single-junction solar cell,” Zhu said.

Software Filings Reach New Record

NREL’s Technology Transfer Office received 116 software record (SWR) disclosures in fiscal 2020, establishing a new record and marking a big increase from 72 the prior year. The growth in submittals is partly due to more software being developed and authorized for free open-source release. One software record approved for closed-source licensing last year and now available for commercial users is the Electric Vehicle Infrastructure Projection tool, or EVI-Pro. A simplified, open-source version, known as EVI-Pro Lite, also has been released.

The core of EVI-Pro allows users to forecast the demand for electric vehicle charging infrastructure in a particular area. The predictive nature of the software also enables users to determine in advance how an influx of electric vehicles might affect the grid and energy demand. EVI-Pro relies on real-world information.

Eric Wood, the NREL researcher who oversaw the development of EVI-Pro, said it is not enough to simply consider how many charging stations were installed in an area previously and make an educated guess based on that information.

“That misses some key points,” he said. “The vehicle technology is evolving. The charging technology is evolving. And the behavior of individuals that own these vehicles is evolving.”

Early adopters of electric vehicles could charge them at home, in their garage. As the market expands, Wood said, people living in apartments or who have to park on the street need to have a place to plug in.

“The role of public charging infrastructure is going to continue to elevate as the market grows,” he said. “Continuing to develop the software with an eye on reflecting the latest situation in the market is one of the challenges that we face, so keeping EVI-Pro relevant and current is important.”

From the Laboratory to the Outside World

For Glatzmaier, the journey to see how well his invention could perform at isolating and removing hydrogen from the concentrating solar power plant was not a quick one. Grounded from flying because of the pandemic, last year he made four trips to the Nevada site by car. Each trip took about 13 hours one way.

Scientists typically keep close to their laboratory space, with companies able to license ideas that sprang from the inventive minds at NREL. Often, with license in hand, a company will conduct research using its own people. In Glatzmaier’s case, Nevada Solar One signed cooperative research and development agreements that have kept the scientist and company working closely together since 2015.

Glatzmaier initially planned to address the hydrogen buildup using two processes: one to measure the amount of the gas, and a second to extract it. Laboratory-scale tests showed his ideas would work, but he still expected some hesitation from company executives when it came time to trying out the devices on a much larger scale.

“I was thinking, they’re going to be very reluctant because companies tend to not want to make changes to their power plants once they are up and running,” he said. So he proposed installing the mechanism to only measure hydrogen buildup. Instead, the company wanted him to move ahead and tackle both problems at once. From the initial idea to installation has been a long road, but it does not end in Nevada.

Glatzmaier said 80 concentrating solar power plants exist around the world, and talks are in their final stages to license the technology for its use in these plants.

Learn more about licensing NREL-developed technologies.

—Wayne Hicks

Article courtesy of the NREL, The U.S. Department of Energy.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla Robotaxi spotted without a safety driver in Austin; Musk confirms testing begins

Published

on

By

Tesla Robotaxi spotted without a safety driver in Austin; Musk confirms testing begins

It’s finally happening. After years of promises, missed timelines dating back to the “Autonomy Day” in 2019, and endless iterations of “Full Self-Driving” (FSD), a Tesla vehicle has been spotted driving on public roads in Austin without anyone in the driver’s seat or a safety monitor in the passenger seat.

Elon Musk has confirmed that Robotaxi testing has officially commenced. This is undeniably a step forward for the company’s autonomy ambitions.

But it is also a terrifying leap of faith, given the complete lack of safety data proving the system is ready for this.

The sighting, captured over the weekend by locals in Austin, shows what appears to be a specially outfitted Model Y, presumably a testbed for the upcoming dedicated Robotaxi platform, navigating city streets. The steering wheel is turning, the car is moving, and the driver’s seat and front passenger seat are empty:

Advertisement – scroll for more content

Following the online buzz surrounding the sighting, Elon Musk took to X to confirm the obvious:

“Testing is underway with no occupant in the car.”

In isolation, this is exciting news. It suggests Tesla has reached an internal confidence level in their latest FSD builds for Robotaxi (not in consumer vehicles) where they feel comfortable pulling the human monitor.

It’s the tangible progress toward the driverless future many Tesla owners bought into years ago.

However, there’s still a lot of room for concerns.

Tesla has, to date, never released comprehensive, verifiable data proving that its FSD system is safer than a human driver. We get anecdotal evidence, curated video clips, and high-level statistics about “miles driven,” but not the granular disengagement data that competitors like Waymo provide to regulators and the public.

In fact, the data we do have, based on incident reports submitted to the NHTSA under their Standing General Order regarding ADS and ADAS systems, paints a worrying picture.

The data pointed to Tesla’s Robotaxi pilot in Austin having a crash every ~62,000 miles, significantly higher than the human average, despite a safety monitor inside the car that should have prevented further crashes.

CEO Elon Musk said last week that he expects Tesla’s Robotaxi service in Austin will be without a safety monitor within three weeks.

Electrek’s Take

Think about that for a second. The current fleet requires human intervention to avoid crashes. We know this. If human interventions are currently preventing accidents, common sense dictates that removing the human without a massive, documented improvement in the system’s base capability will lead to more incidents.

Tesla seems to be skipping the “prove it’s safe” phase and jumping straight to the “deploy it” phase.

I want Tesla to succeed here. A functional, scalable Robotaxi network would be a civilization-level improvement in transport. Seeing a driverless Tesla on public roads might feel like a visceral milestone, proof that the technology is advancing.

But “advancing” is not the same as “safe.”

I have serious concerns about the fact that Tesla has consistently avoided releasing verifiable, valuable data on the safety of FSD or its Robotaxi pilot program.

We have to try ourselves to match Tesla’s sparse release of Robotaxi mileage to the limited crash data reported to NHTSA. And that doesn’t look very good for Tesla.

So far, and even with this sighting, the Robotaxi program in Austin seems more of a marketing effort than the true first step toward scaling a driverless ride-hailing service. It looks like an effort to manufacture a win while Waymo rapidly scales its commercial driverless system.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

BHP and Rio Tinto to put MASSIVE 240-ton electric haul trucks to the test

Published

on

By

BHP and Rio Tinto to put MASSIVE 240-ton electric haul trucks to the test

The Cat 793 XE Early Learner battery-electric haul trucks deliver all the performance of its diesel-powered siblings without the noise, vibrations, and harmful emissions – and now, they’re being put to the test at BHP’s iron ore mine in Australia.

Part of a collaborative effort between BHP and Rio Tinto to help decarbonize BHP’s Jimblebar iron ore mine in the Pilbara, these 240-ton Cat 793 XE Early Learner electric haul trucks represent a major step toward a more sustainable future in mining, designed to deliver zero exhaust emissions while maintaining productivity and performance.

“Powering up our first battery-electric haul trucks in the Pilbara is an important step forward on the mining industry’s road to decarbonization,” says BHP Western Australia Iron Ore Asset president, Tim Day. “Replacing diesel isn’t just about changing energy sources, it’s about reimagining how we operate and creating the technologies, infrastructure, and supply chains to transform mining operations. These trials will help us understand how all the pieces of the puzzle fit together: the battery technologies, generation and charging infrastructure, power management, as well as the supply chains to potentially deliver this at scale.”

Like the two trucks deployed at Newmont’s Cripple Creek and Victor mine in Teller County, CO last year, this phase of Caterpillar’s Early Learner program will see the company attempt to integrate multiple electrified trucks at a single site with remote operators, validating the integration of a battery electric fleet with CAT’s existing autonomous and fleet management systems.

Advertisement – scroll for more content

Decarbonisation of Pilbara iron ore operations will rely on technology advancements and breakthroughs in research and development, which is why BHP and Rio Tinto are working closely with Caterpillar to accelerate their fleets’ transition to electric power.

That, and the fact that they’re watching global mining giants Fortescue slash hundreds of millions of dollars from their operating costs by switching to electric, and (presumably) want to get in on that action sooner than later.

Despite the urgency, however, they need to get it right or risk huge disruptions that will eat up any projected efficiency gains. “A significant shift like this demands a strong commitment to research and development, coupled with collaboration across the industry,” adds Day. “This is going to take time to get right, which is why trials like this one with Rio Tinto and Caterpillar are so critical.”

Caterpillar 793 XE Early Learner


First Early Learner Cat 793 XE battery-electric truck arrives at Newmont Cripple Creek and Victor
793 XE Early Learner; via Caterpillar.

The big Caterpillar haul truck is powered by a 564 kWh lithium iron phosphate (LFP) battery pack that sends electrons to a 480 kW (645 hp) electric motor that kicks out an undisclosed amount of torque – but which is more than capable of hauling 250 tons of truck and payload at the same 38 mph to speed as its 2,650 hp diesel-powered bretheren.

The best part: in the right conditions, a heavily-loaded haul truck can rely on regenerative braking to keep it topped off, enabling ’round-the-clock operation without the need to stop and charge – a trick diesel trucks absolutely cannot match.

SOURCE | IMAGES: Caterpillar, via Heavy Equipment Guide.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tales from the comments: Electrek readers share their real-world home solar results

Published

on

By

Tales from the comments: Electrek readers share their real-world home solar results

A few weeks ago, we talked about some real-world numbers shared by Redditors who added a rooftop solar system to their homes. Not to be outdone, Electrek readers took to the comments to share their own real-world solar numbers. Here are some of the best!

That original post, which you can read here, was inspired by a Reddit user going by DontBuyBitcoin who shared a screenshot on r/Solar indicating that their newly-installed ~11.5 kW system produced over 1,700 kWh of electricity in October. “Pretty surprised by the production of the system I got,” writes DontBuyBitcoin. “11.48KW. I cant wait to see what JUNE-AUGUST [2026] going to look like 😍 I wish SolarEdge will make their app better looking with more functionality.”

Other Redditors were quick to share in the enthusiasm, but our Electrek readers weren’t going to be outdone, and shared their own results in the comments section.

I’ve got a 49 panel, 16.5 kW system just outside Austin, TX, and while it’s expensive ($320/mo), I produce much more power than I use each month. But with 2 EVs, a hot tub, and air conditioning in a Texas summer, I’m not mad I have all this. On a current sunny day, I’m producing about 65 kWh. I top out around 107 kWh on a long but somehow not hot day.l in late spring or early fall (whatever that means in Texas).

DAVID CALL

Another reader, Craig Morrow, had a much smaller system at “just” 6.5 kW compared to David’s 16.5 kW deal, but still put up some highly respectable numbers.

Advertisement – scroll for more content

My 6.5 kw PV generates from 16 kwh/day (winter) to 38 kwh/day (late spring). Between the efficiency of my house and my consumption habits, my usage averages 5-6 kwh per day. Went all-in on passive and active solar when I built the house ten years ago, an investment which has long since paid for itself with no heating or utility bills, plus having battery storage means no worries about power outages when the grid goes down. A great feeling to be energy independent!

CRAIG MERROW

Craig had the top comment with twenty upvotes, but he wasn’t the only reader to see some big efficiency gains with home solar. Several of you posted about the cost of your system, and when you’d begin to see an ROI with the savings you were seeing.

My ROI on a $42k system ($30k with the IRA tax credit) was calculated to be 15 years assuming a 4% yearly rate increase. Without the tax credit it would likely be 20+ years. It makes no sense financially. Interestingly, Europeans pay a lot less for similar size systems. Why is that?

BETTERFUTURE

Another commenter, Leonard Bates, was also seeing great returns – but took things a step further by doing some extra math to compare the cost of fueling up his car with gas vs. topping it off with electrons generated by his home solar system.

It is hard for the average Joe to understand electricity production numbers, so I have reduced our experience into dollars. We have a 8.8 kWh rooftop system and two EVs that (other than a few vacation trips a year) are charged at home. We are retired, so we can charge during the day. Bottom line, we saved over $4,000 by not buying gasoline last year (drove ~41,000 miles). Electric bills, with the load of the EVs, is basically a breakeven. The system cost us about $22,000, so a breakeven on the system of about six years and then free electricity for another 20, until the panels need to be replace. Plus we are “energy independent” for our cars. If there is turmoil in the Middle East, it doesn’t affect our pocket books.

LEONARD BATES

Leonard’s math reminds me of landscaper Colin Ash, who has been operating Ash Landscaping for over 30 years and recently traded his diesel excavator in for an electric JCB mini excavator he powers exclusively with solar panels mounted on his carport. “I’m a long-time electric vehicle driver and run my cars on solar energy generated from solar panels on the roof of the car port at my home,” explains Ash. “Adding the new JCB 8008E CTS was a perfect next step and I can plug it in next to the car and charge both overnight.”

So, Ash is happy. It seems like you guys are pretty happy, too – even without the home solar tax credit that a lot of you didn’t even know existed in the first place. Here’s hoping a lot more people decide to share their results with home solar, too.

Or, as one of our commenters put it:

If more homeowners share data like this, it’ll help others make informed decisions rather than relying just on sales projections.

ETECH BUY

Original content from Electrek.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending