Connect with us

Published

on

For Greg Glatzmaier, the road between innovation and implementation runs along a dusty stretch of highway about a dozen miles south of Boulder City, Nevada, where his patented idea could solve an industry problem. The destination for his idea is Nevada Solar One, an outpost in the desert where 186,000 parabolic shaped mirrors tilt to capture the sun’s rays.

Greg Glatzmaier tests the high-temperature thermal/mechanical stability of sealants that are being used in equipment installed at the Nevada Solar One power plant. The process reduces trace levels of hydrogen in the power plant and maintains its original design efficiency and power production. Photo by Dennis Schroeder, NREL

“When the plant first opened, there was nothing around it but open desert with mountains to the west and east,” said Glatzmaier, a senior engineer in the Thermal Energy Science and Technologies group at the National Renewable Energy Laboratory (NREL). “The only other landscape feature is a dry lakebed north of the plant.”

Since Nevada Solar One began operations in the summer of 2007, other utility-scale solar power plants have opened in that lakebed. Nevada Solar One is the only concentrating solar power (CSP) plant in the region, however, and the technology faces a unique set of challenges.

The CSP facility uses concentrated beams of sunlight to heat a fluid flowing through 20,000 tubes to as high as 752 degrees Fahrenheit. The process creates steam to spin a turbine that powers a generator and produces electricity. Over time, however, the heat transfer fluid begins to break down and form hydrogen, which reduces the effectiveness of the process. Tiny metal pellets in the tubes absorb the hydrogen, but after about seven years they become saturated and cannot be removed and replaced. Glatzmaier developed a method to address the hydrogen problem.

“To try to go in individually and address the situation for each tube is not really practical,” Glatzmaier said. “So, the method that I’ve developed, and what’s in that patent, and what this project has been all about, is to reduce and control the level of hydrogen that’s in the heat transfer fluid.”

NREL applied for a patent on Glatzmaier’s invention in the fall of 2017. The U.S. Patent and Trademark Office last May granted patent protection to what is simply called “Hydrogen sensing and separation.”

Laboratory Filed 188 Patent Applications

Glatzmaier’s patent was merely one of the 40 U.S. patents issued to NREL during fiscal 2020, a bump from the 32 issued during the prior fiscal year. Of the 269 disclosures filed with the laboratory’s Technology Transfer Office as the first step toward either patent or copyright protection, 153 fell in the category of a record of invention and 116 in the area of software.

“We continue to see strong engagement from researchers who submit their ideas for evaluation, with especially strong growth in software,” said Anne Miller, director of NREL’s Technology Transfer Office. “It’s great to see such growth because it tells us that the outreach to the lab to get people to report their innovations and work with us in getting them protected and deployed means that it’s working, that people know who to contact. Hopefully, it means that they have some confidence in our ability to be helpful and steer them in the right direction.”

Anne Miller, director of NREL’s Technology Transfer Office, speaks to laboratory employees at a 2019 event. Photo by Werner Slocum, NREL.

NREL filed 188 patent applications in FY20, up from 124 the year before.

Lance Wheeler, a research scientist at NREL, has about a dozen patent applications in the pipeline tied to the discovery several years ago of a way to turn windows into solar cells. The technology relies on perovskite solar cells that enable the glass to darken and generate electricity, and also switch back to a clear pane. The most recent patent approved, for “Energy-harvesting chromogenic devices,” was granted in November, or almost four years after the provisional application was filed.

“It’s much different than writing a paper because you can write a paper and get it published within months,” said Wheeler, who shares credit on the patent with colleagues Joey Luther, Jeffrey Christians, and Joe Berry. “You’ll never get a patent awarded in months. It’s usually at least a year, and three is not crazy.”

Buildings across the United States account for nearly two-thirds of energy used, so the notion of using these “smart windows” to take advantage of sunlight could bring that energy consumption down.

The patents issued so far for Wheeler’s dynamic photovoltaic windows cover foundational aspects of the technology and sprang from the initial research. A series of patent applications followed.

“When you write the first patent application, you don’t know everything,” Wheeler said. “As you learn more and especially for very particular market needs, or what a product might look like, you learn what’s important and you continue to protect the things that are working. Then you make more discoveries, and you patent more things, but they’re all aligned in the same area.”

Perovskite Composition Earns Patent Protection

Alignment, as it turns out, is a key part of making perovskites most effective in capturing the sun’s energy. Unlike widely used silicon, which is a naturally occurring mineral, perovskites used in solar cells are grown through chemistry. The crystalline structure of perovskites has proven exceptionally efficient at converting sunlight to electricity.

NREL researchers have explored possible combinations for perovskite formulas to find the best. That work resulted in a patent issued in April 2020 for “Oriented perovskite crystals and methods for making the same.” The process begins with a small crystal that’s attached to another crystal and then another and on and on. The crystals are also oriented in the same direction. Kai Zhu, a senior scientist and one of the inventors, uses bricklaying as an analogy.

“You lay one layer down, you put one next to another, you align them perfectly,” he said. “You have to do this in order to build a very large wall. But if you have some randomness in it, your wall will collapse.”

The patent, which covers the composition of the perovskite, was issued to Zhu, Berry, and Donghoe Kim of NREL and to a scientist in Japan. NREL filed the patent application in 2017. Compared to a perovskite solar cell made of crystals allowed to grow randomly instead of in a specific orientation, the NREL-developed composition has been proven to have fewer defects and able to move charge carriers quickly. The result is a perovskite solar cell capable of reaching the highest efficiency.

“This represents the current best performing perovskite composition for the single-junction solar cell,” Zhu said.

Software Filings Reach New Record

NREL’s Technology Transfer Office received 116 software record (SWR) disclosures in fiscal 2020, establishing a new record and marking a big increase from 72 the prior year. The growth in submittals is partly due to more software being developed and authorized for free open-source release. One software record approved for closed-source licensing last year and now available for commercial users is the Electric Vehicle Infrastructure Projection tool, or EVI-Pro. A simplified, open-source version, known as EVI-Pro Lite, also has been released.

The core of EVI-Pro allows users to forecast the demand for electric vehicle charging infrastructure in a particular area. The predictive nature of the software also enables users to determine in advance how an influx of electric vehicles might affect the grid and energy demand. EVI-Pro relies on real-world information.

Eric Wood, the NREL researcher who oversaw the development of EVI-Pro, said it is not enough to simply consider how many charging stations were installed in an area previously and make an educated guess based on that information.

“That misses some key points,” he said. “The vehicle technology is evolving. The charging technology is evolving. And the behavior of individuals that own these vehicles is evolving.”

Early adopters of electric vehicles could charge them at home, in their garage. As the market expands, Wood said, people living in apartments or who have to park on the street need to have a place to plug in.

“The role of public charging infrastructure is going to continue to elevate as the market grows,” he said. “Continuing to develop the software with an eye on reflecting the latest situation in the market is one of the challenges that we face, so keeping EVI-Pro relevant and current is important.”

From the Laboratory to the Outside World

For Glatzmaier, the journey to see how well his invention could perform at isolating and removing hydrogen from the concentrating solar power plant was not a quick one. Grounded from flying because of the pandemic, last year he made four trips to the Nevada site by car. Each trip took about 13 hours one way.

Scientists typically keep close to their laboratory space, with companies able to license ideas that sprang from the inventive minds at NREL. Often, with license in hand, a company will conduct research using its own people. In Glatzmaier’s case, Nevada Solar One signed cooperative research and development agreements that have kept the scientist and company working closely together since 2015.

Glatzmaier initially planned to address the hydrogen buildup using two processes: one to measure the amount of the gas, and a second to extract it. Laboratory-scale tests showed his ideas would work, but he still expected some hesitation from company executives when it came time to trying out the devices on a much larger scale.

“I was thinking, they’re going to be very reluctant because companies tend to not want to make changes to their power plants once they are up and running,” he said. So he proposed installing the mechanism to only measure hydrogen buildup. Instead, the company wanted him to move ahead and tackle both problems at once. From the initial idea to installation has been a long road, but it does not end in Nevada.

Glatzmaier said 80 concentrating solar power plants exist around the world, and talks are in their final stages to license the technology for its use in these plants.

Learn more about licensing NREL-developed technologies.

—Wayne Hicks

Article courtesy of the NREL, The U.S. Department of Energy.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Here are 5 vital things you need to know about heat pumps

Published

on

By

Here are 5 vital things you need to know about heat pumps

Electrek spoke with Heidi Gehring, associate director, cooling product marketing at Carrier HVAC, about the five essential things to know about this energy-efficient, cost-effective way to heat and cool a home.

Electrek: What’s a heat pump and how does it work?

Heidi Gehring: A heat pump is often mistaken for an air conditioner at first glance. What makes it different from an air conditioner is that it can both heat and cool your home using electricity and refrigerant.

In cooler months, heat is pulled from the outdoor air and transferred indoors; in warmer months, the system pulls heat out of the indoor air. Heat pumps have both an indoor and outdoor component. Each unit contains a fan and coil that operates either as a condenser (in cooling mode) or an evaporator (in heating mode). The fan moves the air across the coil and throughout the ducts in the home.

Electrek: Do heat pumps save you money, and what kinds of cost savings can be expected?

Heidi Gehring: Because heat pumps are more energy efficient, they can save you money on your heating and cooling bills. Your savings will vary based on the model you select.

Heat pumps are rated by their Heating Seasonal Performance Factor (HSPF2) – which is a measure of a heat pump’s overall energy efficiency during the heating season – their Seasonal Energy Efficiency Ratio (SEER2), and their Energy Efficiency Ratio (EER2). The higher the rating, the more energy-efficient the system. 

Additionally, the US government’s Inflation Reduction Act of 2022 includes incentives for the installation of high-efficiency home heating and cooling products, including up to a $2,000 tax credit for high-efficiency heat pumps and up to 30% for geothermal heat pump systems placed in service between 2022 and 2032. Look into local and state programs, too, as many utilities and local governments offer heat pump rebates.

Electrek: Why is a heat pump better for the environment?

Heidi Gehring: Heat pumps rely on electricity rather than fossil fuels, making them a much greener choice. Improvements in technology in recent years also mean that heat pumps are more efficient than ever, requiring less electricity than older heaters, furnaces, and air conditioners.

Geothermal heat pumps are also available – they pull energy directly from the earth to heat or cool your home and can result in up to 70% savings on your energy bill.

Electrek: What features should you consider when comparing different models?

Heidi Gehring: Heat pumps vary in the number of stages or speeds they offer. Different speeds or stages can affect your comfort and the consistency of indoor temperature. Humidity plays a major role but is often overlooked. Two-stage and variable-speed offer better control because they operate for a longer period of time at lower speeds and use less energy. These pull more humidity out of the air than models with a single-stage compressor.

Variable-speed and two-stage models are generally quieter than single-stage models, and because they run longer, that means the air is run through the filter more, so it has less chance of becoming stagnant.

Electrek: When is the best time of year to install a heat pump?

Heidi Gehring: Usually in the spring or fall. During the coldest winter months and hottest summer months, demand for systems and technicians increases, so you may experience longer wait times and higher prices. Make sure you hire a professional. HVAC systems of any kind require expert knowledge for installation and are not a good DIY project.

If you’re switching from a traditional HVAC system to a heat pump, you may also need electrical upgrades. A professional HVAC installer can help you with that as well.

Read more: This award-winning apartment heat pump can fit under a kitchen sink

Photo: Carrier HVAC


Heidi Gehring is the associate director, cooling product marketing at Carrier HVAC. She joined Bryant in 2017 as the quality manager for warranty, data analytics, and field service technology. In 2019, she moved into product marketing. She holds a bachelor’s degree in industrial and systems engineering from the University of Wisconsin Madison and an MBA from Purdue Global.


UnderstandSolar is a free service that links you to top-rated solar installers in your region for personalized solar estimates. Tesla now offers price matching, so it’s important to shop for the best quotes. Click here to learn more and get your quotes. — *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Kia officially premieres EV9 SUV with 336-mile range, vehicle-to-grid capabilities, plus GT version

Published

on

By

Kia officially premieres EV9 SUV with 336-mile range, vehicle-to-grid capabilities, plus GT version

As promised, following our first glimpse at official images last week, Kia has fully launched its long-anticipated EV9 SUV ahead of pre-orders next quarter. In addition to further details regarding some of the technology we’ve already seen in Kia’s first third-row EV, the automaker shared exciting news regarding sustainability, autonomy, over-the-air updates, and vehicle-to-grid capabilities.

Table of contents

Quick recap on Kia’s first three-row electric SUV

The Kia EV9 debuts as the second all-electric model donning the Korean automaker’s new “EV” series nomenclature. Like the EV6 crossover that proceeded it, the EV9 sits atop Hyundai Motor Group’s 800V E-GMP platform, offering ultrafast charging speeds in addition to capabilities for vehicle-to-load (V2L) power and the potential for greater uses. (More on that below.)

We’ve been anticipating today’s official debut since Kia first teased the SUV concept in November 2021. That was soon followed by a working prototype last summer that closely resembled its originally dreamed design form. In mid-March, Kia shared the first full images of the EV9, inside and out, relaying some of the design elements reiterated during the recent presentation.

This includes the SUV’s unique digital spin on Kia’s signature “tiger face” front end, as well as multiple seating options in the cabin, including second-row swivel seats that turn 180 degrees. While that was certainly enough to briefly pique our interest, we were quickly anticipating the full EV9 debut from Korea, which was promised before the end of the month.

Following the full presentation from Kia (you can view that for yourself below), we have learned a ton more about this all-electric SUV, and there’s a lot for future customers to get excited about.

Kia SUV
Credit: Kia

Kia EV9 SUV specs and key features

All right, let’s dig right in because there’s a lot to unfold here. The Kia EV9 SUV will come available in two different battery size options – a 76.1 kWh pack in the Standard RWD option or a Long Range 99.8 kWh battery available in both RWD and AWD configurations.

When asked, the Kia team confirmed that both the Standard and Long Range variants of the RWD EV9 will be sold in North America. The automaker is not sharing detailed performance specs for each trim level just yet, but it did share a few:

  • RWD Long Range
    • One single 150 kW (350 Nm) electric motor
    • Estimated 0-100 km/h (0-62 mph) acceleration in 9.4 seconds
  • RWD Standard Range
    • One single 160 kW (350 Nm) electric motor
    • Estimated 0-100 km/h (0-62 mph) acceleration in 8.2 seconds
  • AWD variant
    • Two electric motors that combine for 282 kW (600 Nm torque)
    • Estimated 0-100 km/h (0-62 mph) acceleration in 6 seconds

Right now, Kia is estimating its Long Range RWD version of the EV9 will be able to deliver 541 km (336 miles) of range on a single charge. Since its estimates were calculated using the more generous WLTP standard, we’d expect the official EPA estimated range to land between 300-310 miles.

Kia also said it will eventually introduce a “Boost” option that will increase the torque of the AWD SUV’s front motor to a total of 700 Nm. That add-on will be available for purchase at a later date using a new tool debuting on the EV9 – the Kia Connect Store.

According to Kia, the Connect store will enable future drivers to purchase digital features and other services at their leisure, all installed over the air without any need for a dealership visit. When asked by the media during the debut presentation, Kia shared that the Connect Store will offer features as either a one-time purchase or subscription option.

Vehicle-to-… everything!

One of the huge selling points of EVs built upon Hyundai Motor Group’s 800V E-GMP platform is the charging performance it can deliver. The super fast charge rates of the Hyundai IONIQ 5 and Kia EV6 have already gone over really well with consumers and should be no different when the EV9 SUV arrives.

Kia states that the 800V platform will be able to garner an estimated 239 km (approximately 149 miles) of range in just 15 minutes of DC fast charging, which could be perfect for future road trips in the family-sized electric SUV.

Another huge perk enabled by the E-GMP platform is its Integrated Charging Control Unit (ICCU), allowing for the discharging of energy from the EV’s battery to power other devices. This is better known as vehicle-to-load, or V2L. Kia states the EV9 will be able to deliver 3.68 kW of power to other devices, whether it’s a laptop, mini fridge, or charging another EV.

We’ve explored the function ourselves with the Hyundai IONIQ 5 and IONIQ 6, but Kia is taking things a step further in the EV9 with another first. Kia’s all-electric SUV will come equipped with the technology to support vehicle-to-home (V2H), allowing future owners to use the EV9 has a backup power source during emergencies or power outages.

Furthermore, Kia said its EV9 customers will eventually be able to add a vehicle-to-grid (V2G) function in the future, allowing them to actually supply surplus energy back to their local energy grid for profit. There will be a lot of red tape to cut through to get this feature implemented, but if successful, it could be an absolute game changer.

Kia debuts a GT-Line, but what about a performance GT?

During its recent presentation, Kia also introduced a new GT-line that will emerge in select markets later this year. Per Kia:

In addition to the standard model, Kia has unveiled the GT-Line model design, which features a unique aesthetic that distinguishes it from the standard model. The front and rear bumpers, wheels, and roof rack have undergone a transformation, donning a distinctive black color palette that exudes a strong and assertive presence, setting it apart from its standard counterpart. Notably, the GT-Line features an exclusive digital pattern lighting grill that adds an element of dynamism and sophistication to its already impressive design. 

All that said, this trim variant is aesthetic in nature and should not be confused with a performance GT version of the SUV, similar to what Kia did with the aforementioned EV6. That would be sweet, though, wouldn’t it?

Well, to our surprise, Kia president and CEO Ho-Sung Song said the automaker is, in fact, in the process of developing an EV9 performance GT SUV, stating further that it will “redefine what performance means to an EV.” Exciting news, but Song followed by saying we won’t see that version until early 2025.

ADAS and sustainability get a chance to shine in the EV9

For years now, Kia has been one of the global automakers truly embracing electrification and striving toward true carbon neutrality throughout its business by 2045, but during the EV9 SUV presentation, we learned it is again pushing the boundaries of sustainable styling.

The EV9 will be the first Kia model to showcase the automaker’s three-step Design Sustainability Strategy, which includes the phasing out of leathers, increasing the use of bio-based materials, and applying 10 “must-have” sustainable items to every model, from its standard trim all the way to the top tier option. Here are some examples present in Kia’s electric SUV:

  • Recycled polyethylene terephthalate (PET)
  • Recycled suede and recycled thermoplastic olefin (TPO) in the dashboard, door, and pillar trim
  • Recycled fishing nets used in the floor carpets
  • BIO PU (Bio-Polyurethane), derived from corn and eucalyptus, is used to replace leather and PVC

In terms of advanced driver assistance systems (ADAS), Kia is striving toward reaching SAE Level 3 autonomy, and the EV9 will arrive with the necessary components to eventually allow for hands-free driving under certain driving conditions as the SUV follows the car in front of it while maintaining a safe distance.

Its current iteration will feature remote smart parking assist, rear cross-traffic collision-avoidance assist, blind spot detection, lane-keeping assist, and smart cruise control. Highway driving assist 2 allows for lane changes and uses hands-on detection to confirm its driver’s attention.

Lastly, Digital Key 2 will allow future EV9 owners to open and start their car using just their smartphone – another first for Kia.

Kia SUV

Kia EV9 pricing and availability

All right, let’s start with pricing. There is none, sorry. According to Kia, its team is “monitoring several factors to determine optimal pricing for its customers.” We’re not sure where it will land, but this SUV is very likely going to be Kia’s most expensive model to date.

The first versions will be produced in Korea, but Kia intends to share global production plans for the EV9 in the near future. Pre-orders for the electric SUV will begin in Korea in Q2 2023, followed by other global markets in the second half of this year, including Europe, North and South America, and the Middle East.

We are sure to learn more as we approach pre-orders in Korea and will at least be able to ballpark where pricing and performance specs may land for the North American market. In the meantime, check out the full EV9 SUV world premiere from Kia below.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Meet Hawaii’s first solar and wind-powered electric catamaran charter

Published

on

By

Meet Hawaii’s first solar and wind-powered electric catamaran charter

Kohala Blue, a boat tour operator in Kawaihae on the Big Island of Hawaii, has introduced what it calls the first renewable electric catamaran charter in Hawaii. The Dolce Vita is powered by an electric propulsion system that is charged by solar panels, wind turbines, and propeller regeneration.

Kohala Blue’s solar and wind-powered electric catamaran

When Kohala Blue’s 34-foot Gemini sailing charter broke down last year with a damaged diesel engine, the company was caught in a tight spot with few options.

Rather than trying to replace the parts, which would have been really costly, Kohala Blue’s owner, Shaun Barnes, made the decision to go electric.

Kohala Blue issued a news release last week, stating, “The company recently upgraded its 34-foot Gemini sailing catamaran with two electric propulsion motors, powered with sun and wind, that run silently and peacefully while underway.” The press release added:

What this means for passengers is a sailing experience like no other in the islands: no engine noise, vibration, air or water pollution and no fumes associated with gas or diesel power. Guests are confident their choice to snorkel, sail and observe marine life from the spacious decks of the Dolce Vita is the best for the marine environment.

The company says the conversion has completely transformed the experience for guests, creating a nearly silent, peaceful ride while minimizing the impact on marine animals.

In particular, electric propulsion has much less impact on whales than loud gas engines because they rely on ultrasonic hearing to navigate and find food.

Kohala Blue Instagram

The 34-foot Gemini 105MC sailing catamaran is Hawaii’s first renewable electric charter, according to Kohala Blue. Solar panels fitted on the dodger combined with wind turbines and propeller regeneration allow for a completely renewable energy-powered eco-friendly experience.

Barnes says she has noticed clear benefits from the electric conversion, telling West Hawaii Today:

The best part of it is the peace and quiet. When we’re moving, people can’t even tell whether we’re under motor or under sail. We have a hydrophone — an underwater microphone — and you can hear other boats coming from very far away.

She added that although the electric sailboat has roughly 19.8 hp, less than the 27 hp with the diesel engine, the electric engine’s instant torque offsets the speed reduction with a max speed under motor of about 6.5 knots.

Kohala Blue offers private charters for up to six guests with morning, afternoon, and sunset sails. You can book tours on the company’s website.

Electrek’s Take

Kohala Blue is paving the way for an eco-friendly sailing experience with its new solar- and wind-powered electric-powered catamaran.

Nobody wants to travel on the water with a loud diesel engine blocking out all the sounds and smells of nature and, more importantly, destroying the environment and its inhabitants.

The company may need to start another business in converting sailboats to solar, wind, and electric power because these could revolutionize the charter industry while saving the oceans and the creatures living in them.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending