Connect with us

Published

on

A team of scientists in Namibia, in southwest Africa, has recorded a phenomenal cosmic explosion, the brightest so far, of gamma radiation from a collapsing star. They said usually these explosions occur when a massive star — five or 10 times the mass of the Sun – abruptly detonates and turns into a black hole. The scientists said the gamma-ray burst (GRB) was one of the most energetic radiations and longest gamma-ray afterglow to date. It was also one of the nearest GRBs recorded so far from the Earth, at a distance of about one billion light-years. For comparison: the typical GRB happens about 20 billion light-years away.

This observation has challenged the established theory of gamma-ray bursts in the universe, the team of scientists said. Also, this comparative proximity of the event meant that the scientists could see the “colours” of the radiation.

The scientists could follow the afterglow for up to three days after the initial explosion. The result was a surprise, they noted in the research paper published in Deutsches Elektronen-Synchrotron (DESY). According to the DESY website, its research centre is one of the world’s leading facilities for particle acceleration. It is part of the Helmholtz Association, Germany’s largest scientific organisation.

“Our observations revealed curious similarities between the X-ray and very-high-energy gamma-ray emission of the burst’s afterglow,” said Sylvia Zhu, one of the authors of the paper.

Established theories assume that the two emission components must be produced by separate mechanisms. The event was captured by the High Energy Stereoscopic System (HESS) on August 29, 2019, after the Fermi and Swift satellites detected a burst of radiation in the constellation of Eridanus, according to the DESY research centre.

DESY has also released a video explainer on YouTube simulating the cosmic event. Watch it below:

The video shows a massive dying star collapsing and a neutron star or black hole forming. Then relativistic jets break out from the star and a supernova is produced. Some matter then scatters on magnetic fields around the blast wave and is accelerated. Roughly 900 million years later, radiation from this gamma-ray burst arrives at Earth and satellites and telescopes such as the HESS detect it. Gamma-ray bursts may also occur when two super-dense stellar corpses called neutron stars collide.


It’s an all television spectacular this week on Orbital, the Gadgets 360 podcast, as we discuss 8K, screen sizes, QLED and mini-LED panels — and offer some buying advice. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

For the latest tech news and reviews, follow Gadgets 360 on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.

OnePlus TV U1S Series Price in India, Design Tipped; May Come With NFC Remote, Offer External 1080p Webcam

‘Third Eye’ Camera Can Help ‘Smartphone Zombies’ Walk Safely Without Bumping Into Obstacles

Continue Reading

Science

Dark Matter and Dark Energy Might Not Exist After All, New Study Suggests

Published

on

By

A new theory suggests dark matter and dark energy may not exist. Physicist Rajendra Gupta’s model proposes that the universe’s forces weaken over time, naturally explaining cosmic expansion and galactic motion without unseen matter or energy.

Continue Reading

Science

Astronomers Spot Signs of Baby Planets in a Star’s Mysterious Disk

Published

on

By

Astronomers using Keck Observatory have imaged the dusty disk around HD 34282, a young star about 400 light-years away, revealing bright clumps and a 40 AU gap—clear signs of planet formation. The system provides a rare glimpse into early planetary birth, helping refine models of how gas and dust evolve into new worlds.

Continue Reading

Science

NASA’s James Webb Space Telescope Telescope Challenges Old Theories on Mini-Neptune Worlds

Published

on

By

New models suggest mini-Neptunes—planets smaller than Neptune with thick gas envelopes—may have solid rocky surfaces instead of molten magma. Data from NASA’s JWST revealed high-pressure atmospheres capable of compressing molten rock into solid crusts. This discovery challenges earlier assumptions and offers key insights into exoplanet composition and planetary …

Continue Reading

Trending