Connect with us

Published

on

Solar panel “wings” spread out and two camera “eyes” pointing ahead, China’s Mars rover Zhurong struck a birdlike pose as it explored the red planet in photos released by the country’s space agency Friday.

Zhurong’s touchdown in May was the first ever successful probe landing by any country on its first Mars mission — a milestone in China’s ascent to space superpower status.

The rover, named after a mythical Chinese fire god, has since been studying the topography of a vast Martian lava plain known as the Utopia Planitia.

Photos published by the China National Space Administration showed tracks in the red soil left by Zhurong, which the agency described as “China’s imprint”, after it drove onto the planet’s surface form a landing platform adorned with a large Chinese flag.

The six-wheeled, solar-powered, 240-kilogramme (530-pound) Zhurong is expected to spend three months taking photos, harvesting geographical data, and collecting rock samples.

The space agency said on Friday that the Mars mission’s “engineering tasks were carried out smoothly as planned,” and that the equipment were currently “in good condition.”

China has now sent astronauts into space, powered probes to the Moon and landed a rover on Mars — one of the most prestigious of all prizes in the competition for dominion of space.

The United States and Russia are the only other countries to have reached Mars, and only the former has operated a rover on the surface.

Several US, Russian and European attempts to land rovers on Mars have failed in the past, most recently in 2016 with the crash-landing of the Schiaparelli joint Russian-European spacecraft.

The latest successful arrival came in February, when US space agency NASA landed its rover Perseverance, which has since been exploring the planet.


Continue Reading

Science

NASA’s EZIE Satellites Begin Mission to Study Auroral Electrojets and Space Weather

Published

on

By

NASA’s EZIE Satellites Begin Mission to Study Auroral Electrojets and Space Weather

Under the night sky in California, NASA’s Electrojet Zeeman Imaging Explorer (EZIE) mission was launched aboard a SpaceX Falcon 9 rocket at 11:43 p.m. PDT on March 14 from Vandenberg Space Force Base. Three small satellites, designed to study Earth’s auroral electrojets, were carried into orbit. The deployment of these satellites was confirmed at approximately 2 a.m. PDT on March 15. Over the next ten days, signals will be transmitted to ensure they are functioning properly before commencing their 18-month mission.

Mission Objectives and Scientific Significance

According to the mission details shared by NASA, EZIE’s satellites will operate in a formation known as “pearls-on-a-string,” flying between 260 and 370 miles above Earth. These satellites will map the intense electrical currents that flow through the upper atmosphere in polar regions. These currents, linked to solar storms, influence auroras and Earth’s magnetic field. The study aims to improve understanding of space weather and its effects on technology, including satellite operations and communication systems.

Speaking to NASA, Jared Leisner, Program Executive for EZIE, stated that small-scale missions like EZIE are being prioritised for their scientific value despite their inherent risks. The data collected will contribute to research not only about Earth but also about magnetic interactions on other planets.

Unique Approach to Orbit Control

Instead of traditional propulsion methods, EZIE satellites will utilise atmospheric drag to adjust their positions. As reported by NASA’s Goddard Space Flight Center, Larry Kepko, EZIE’s mission scientist, explained that previous studies have focused on either large or small-scale observations of these currents. EZIE’s approach will provide new insights into their formation and evolution.

Public Engagement and Educational Outreach

To expand public participation, magnetometer kits known as EZIE-Mag are being distributed to students and science enthusiasts. Data collected from these kits will be integrated with EZIE’s space-based measurements to provide a more detailed understanding of Earth’s electrical currents.
The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center and funded by NASA’s Heliophysics Division. The Johns Hopkins Applied Physics Laboratory leads the project, with CubeSats developed by Blue Canyon Technologies and magnetometers built by NASA’s Jet Propulsion Laboratory.

Continue Reading

Science

Antarctic Ice Melt Weakens Strongest Ocean Current, Disrupting Global Circulation

Published

on

By

Antarctic Ice Melt Weakens Strongest Ocean Current, Disrupting Global Circulation

Earth’s most powerful ocean current is losing strength, with potential consequences for global ocean circulation. Scientists have projected that the Antarctic Circumpolar Current (ACC) could slow down by as much as 20 percent by 2050. The weakening of this current, which connects multiple oceans and regulates heat exchange, is being attributed to the increasing influx of cold meltwater from Antarctica. This shift in ocean dynamics could have far-reaching effects on sea levels, temperatures, and marine ecosystems worldwide.

Findings from Climate Modelling

According to a study published in Environmental Research Letters, a team led by Bishakhdatta Gayen, a fluid mechanist at the University of Melbourne, has analysed how Antarctic ice melt is affecting the ACC. Using one of Australia’s most advanced climate simulators, researchers modelled interactions between the ice sheet and ocean waters. The study indicates that the introduction of fresh, cold meltwater weakens the current by altering ocean density and reducing convection between surface and deep waters.

Consequences of a Slower Current

The slowdown of the ACC is expected to disrupt global ocean circulation. As convection weakens, warm water may travel further into Antarctic waters, accelerating ice melt and contributing to rising sea levels. The weakening current could also allow invasive species to reach the Antarctic coastline, affecting the region’s ecosystem.

Speaking to Live Science, Gayen compared the process to a “merry-go-round,” explaining that a slower current could lead to faster migration of marine organisms toward Antarctica. Long-term monitoring will be necessary to fully understand these changes, as scientists have only recently begun studying the ACC’s behaviour in detail. The impact of these shifts will not remain confined to Antarctica but will influence ocean circulation patterns across the planet.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


James Webb Space Telescope Captures Hourglass Nebula LBN 483 in Stunning Detail



Crime Patrol Now Streaming on Netflix, New Episodes Every Monday

Continue Reading

Science

Wolf-Rayet 104’s Orbit Tilt Reduces Gamma-Ray Burst Threat, Study Finds

Published

on

By

Wolf-Rayet 104's Orbit Tilt Reduces Gamma-Ray Burst Threat, Study Finds

A new study has shed light on the orbital alignment of the well-known Wolf-Rayet 104 (WR 104) system, long considered a potential threat due to its speculated gamma-ray burst (GRB) risk. Observations conducted using multiple instruments at the W. M. Keck Observatory in Hawaiʻi have confirmed that the star system‘s orbit is tilted 30 to 40 degrees away from Earth. This discovery significantly reduces concerns that a supernova from WR 104 could direct a GRB toward the planet.

Study Confirms Orbital Tilt

According to research published in the Monthly Notices of the Royal Astronomical Society, WR 104 comprises two massive stars locked in an eight-month orbital cycle. The system features a Wolf-Rayet star emitting a strong carbon-rich wind and an OB star producing a hydrogen-dominated stellar wind. Their collision generates a distinctive dust spiral that glows in infrared light.

The structure was first observed in 1999 at the Keck Observatory, and early models suggested that the pinwheel-like dust formation was face-on from Earth’s perspective. This led to speculation that the rotational axis of the stars—and potentially a GRB—could be aimed directly at Earth. However, new spectroscopic data contradicts this assumption.

Unexpected Findings Challenge Previous Models

Reportedly, Grant Hill, Instrument Scientist and astronomer, stated, that their view of the pinwheel dust spiral from Earth absolutely looked face-on and it seemed like a pretty safe assumption that the two stars are orbiting the same way. However, his analysis revealed a surprising discrepancy, with the stellar orbit misaligned from the dust structure.

This unexpected finding raises new questions about how the dust plume forms and whether additional factors influence its shape. While the discovery brings relief regarding potential GRB risks, it also suggests there is still much to understand about WR 104’s unique characteristics

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


PebbleOS-Powered Core 2 Duo and Core Time 2 Smartwatches Unveiled; Pre-Orders Go Live



Apple’s Passwords App Had a Security Flaw That Exposed Users to Phishing Attacks for Three Months

Continue Reading

Trending