Connect with us

Published

on

A species goes extinct when there are none of its kind left. In other words, extinction is about small numbers, so how does big data help us study extinction? Luckily for us, each individual of a species carries with it signatures of its past, information on how connected/ isolated it is today, and other information on what may predict its future, in its genome. The last fifteen years have witnessed a major change in how we can read genomes, and information from genomes of individuals and species can help better plan their conservation. 

All life on Earth harbours genetic material. Often called the blueprint of life, this genetic material could be DNA or RNA. We all know what DNA is, but another way to think of DNA is as data. All mammals, for example harbour between 2 to 3.5 billion bits of data in every one of their cells. The entire string of DNA data is called the whole genome. Recent changes in technology allow us to read whole genomes. We read short 151 letter long information bits many, many times, and piece together the whole genome by comparing it to a known reference. This helps us figure out where each of these 151 letter long pieces go in the 3 billion letter long word. Once we have read each position on an average of 10 or 20 times, we can be confident about it. If each genome is sequenced even ten times and only ten individuals are sampled, for mammals each dataset would consist of 200 to 350 billion bits of data!

Over time, the genome changes because of mutation, or spelling errors that creep in. Such spelling errors create variation, or differences between individual genomes in a population (a set of animals or plants). Similarly, large populations with many individuals will hold a variety of spellings or high genetic variation. Since DNA is the genetic blueprint, changes in the environment can also get reflected in these DNA spellings, with individuals with certain words in their genome surviving better than others under certain conditions. Changes in population size often changes the variety of letters observed at a specific location in the genome, or variation at a specific genomic position. Migration or movement of animals into a population adds new letters and variation. Taking all these together, the history of a population can be understood by comparing the DNA sequences of individuals. The challenge lies in the fact that every population faces all of these effects: changes in population size, environmental selection, migration and mutation, all at once, and it is difficult to separate the effects of different factors. Here, the big data comes to the rescue.

genome wildlife concept genomics

Photo Credit: Dr Anubhab Khan

Genomic data has allowed us to understand how a population has been affected by changes in climate, and whether it has the necessary genomic variation to survive in the face of ongoing climate change. Or how specific human activities have impacted a population in the past. We can understand more about the origins of a population. How susceptible is a population to certain infections? Or whether the individuals in a population are related to each other. Some of these large datasets have helped identify if certain populations are identical and should be managed together or separately. All of these questions help in the management and conservation of a population.

We have worked on such big genomic datasets for tigers, and our research has helped us identify which populations of tigers have high genomic variation and are more connected to other populations. We have identified populations that are small and have low genomic variation, but also seem to have mis-spelled or badly spelled words, or a propensity of ‘bad’ mutations. We have identified unknown relationships between individuals within populations and have suggested strategies that could allow these isolated populations to recover their genomic variation. It has been amazing to peek into animals lives through these big data approaches, and we hope these types of genomic dataset will contribute to understanding how biodiversity can continue to survive on this Earth.


Uma Ramakrishnan is fascinated by unravelling the mysteries of nature using DNA as tool. Along with her lab colleagues, she has spent the last fifteen years studying endangered species in India.She hopes such understanding will contribute to their conservation. Uma is a professor at the National Centre for Biological Sciences.

Dr. Anubhab Khan is a wildlife genomics expert. He has researching genetics of small isolated populations for past several years and has created and analyzed large scale genome sequencing data of tigers, elephants and small cats among others. He keen about population genetics, wildlife conservation and genome sequencing technologies. He is passionate about ending technology disparity in the world by either making advanced technologies and expertise available or by developing techniques that are affordable and accessible to all.

This series is an initiative by the Nature Conservation Foundation (NCF), under their programme ‘Nature Communications’ to encourage nature content in all Indian languages. To know more about birds and nature, Join The Flock


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

SpaceX Successfully Launches 23 Starlink Satellites on Brand-New Falcon 9 Rocket

Published

on

By

SpaceX Successfully Launches 23 Starlink Satellites on Brand-New Falcon 9 Rocket

SpaceX marked its 60th Falcon 9 flight of 2025 by successfully launching a brand-new Falcon 9 booster rocket on the 20th of May. This rocket carries 23 Starlink V2 Mini satellites into low Earth orbit. Among those, 13 feature Direct to Cell capabilities. Originally, it was targeting 11:58 p.m. EDT on May 19 (0358 UTC on May 20) for the launch, but that try was aborted just before liftoff, for reasons that the company did not immediately explain. It was finally launched on Tuesday (May 20) at 11:19 p.m. EDT (0319 GMT on May 21) from the Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.

About the launch

According to SpaceX’s mission overview, this was the first-ever launch for this particular Falcon 9’s (booster B1095) first stage. While most recent SpaceX missions have reused Falcon 9 boosters , a signature part of the company’s cost-saving and sustainability strategy ,Tuesday’s flight featured a rare first-stage debut.

The rocket successfully completed its initial mission, separating from the upper stage around two and a half minutes after liftoff. About eight minutes later, the booster made a precise landing on the SpaceX drone ship “Just Read the Instructions,” stationed in the Atlantic Ocean. This smooth recovery sets the stage for future reusability of the rocket.

Technical Advancement

Of the 23 satellites onboard, 13 were outfitted with direct-to-cell technology — a feature designed to enable satellite connectivity directly to mobile phones, especially in areas lacking terrestrial infrastructure. After reaching space, the rocket’s second stage performed a short engine burn to circularize the orbit before deploying the satellites about 65 minutes after launch.

Starlink is the largest satellite megaconstellation ever constructed, consisting of about 7,500 operational satellites at the moment. And that number is growing all the time, as Tuesday’s action shows.

Continue Reading

Science

Polaris Wasn’t Always the North Star: How Earth’s Wobble Shifts the Celestial Pole

Published

on

By

Polaris Wasn’t Always the North Star: How Earth’s Wobble Shifts the Celestial Pole

Polaris has been the constant guide for explorers and navigators in the northern hemisphere for thousands of years, hence its other name, the famous North Star. It is significant where it is located near the north rotational axis of Earth, and the whole sky appears to spin about it. But that’s not always been the case, and it won’t always be the case. The planet’s sluggish axial wobble, called precession, makes the pole trace a circle about every 26,000 years, bringing different stars into view over the ages.

How Earth’s 26,000-Year Axial Precession Shifts the North Star Over Time

As per NASA, gravitational forces from the sun and moon affect the rotation of Earth; these produce a bulge at the equator and axial precession. Every 26,000 years or so, this wobble makes a complete circle, and it makes the celestial pole move on a cycle, pointing to stars in sequence over time. Thuban, in the star constellation Draco, was the closest visible in the sky to the celestial pole some 4,700 years ago. The stars, such as Kochab and Pherkad, were the nearest to the pole about 3,000 years ago. Polaris now has the title, but not for very long.

The axis of the Earth will eventually change again, bringing new stars into prominence. In about 2,200 years, Errai in the constellation Cepheus will become the North Star. Alderamin, likewise in Cepheus, will have its turn some 5,000 years from now. Deneb, who will approach the pole once more about 9,800 CE, and Vega, a former pole star, returning in roughly 12,000 years, complete this cycle.
Many of these stars fit identifiable constellations, including Cepheus, Draco, and Ursa Minor. Modern stargazing apps incorporating augmented reality for nighttime sky navigation allow amateur astronomers to trace their positions.

As Polaris continues to shine overhead today, its reign is only temporary. Earth’s steady 26,000-year precessional cycle guarantees that other stars will eventually take its place, proving that even in the cosmos, change is constant.

Continue Reading

Science

Scientists Warn of Inadequate Solar Storm Forecasting: What You Need to Know

Published

on

By

Scientists Warn of Inadequate Solar Storm Forecasting: What You Need to Know

Imagine being told a storm is approaching, but you won’t know how dangerous it truly is until minutes before impact. That’s the reality scientists face with solar storms. Although scientists have improved our ability to monitor coronal mass ejections (CMEs) from the Sun and project their arrival at Earth, the most important consideration — the orientation of the storm’s magnetic field — remains unknown until the very last minute. This direction, referred to as the Bz component, decides whether the CME will pass by with little influence or cause disturbances to satellites, electricity grids, and GPS systems.

Lack of Early Bz Data Leaves Earth Vulnerable to Solar Storms, Scientists Urge Wider Sun Coverage

As per a report on Space.com, solar physicist Valentín Martínez Pillet emphasised that knowing the Bz value earlier could dramatically improve our ability to prepare. Currently, spacecraft like NASA’s ACE and DSCOVR detect Bz only when the CME reaches Lagrange Point 1 (L1), giving us just 15 to 60 minutes’ warning. Martínez Pillet predicts it could take 50 years to achieve the forecasting precision we have for Earth’s weather unless we expand our view of the Sun with new satellites placed at Lagrange points L4, L5, and L3.

Despite having the scientific models needed, Martínez Pillet argues we lack vital real-time data from different solar perspectives. Most observations currently come from a single vantage point — L1, which limits our predictive ability. Missions like ESA’s upcoming Vigil, scheduled for launch in 2031 to L5, aim to fill this gap by detecting the CME’s shape and magnetic orientation from the side, potentially giving up to a week’s notice.

But decades may be too long to wait. History reminds us of the danger: the 1859 Carrington Event caused telegraph failures, and a near miss in 2012 could have caused trillions in damage if it had struck Earth. In a 2013 paper, Dan Baker of LASP warned that a direct hit would have left the modern world technologically crippled.

Today, tools like the Global Oscillation Network Group (GONG) and DSCOVR offer continuous solar monitoring, but their limitations emphasise the need to provide broader coverage. “The Sun isn’t changing,” Martínez Pillet said. “It’s our dependence on technology that’s made us more vulnerable.” Until we build the infrastructure to see solar storms before they hit, we may remain dangerously exposed.

Continue Reading

Trending