Connect with us

Published

on

A species goes extinct when there are none of its kind left. In other words, extinction is about small numbers, so how does big data help us study extinction? Luckily for us, each individual of a species carries with it signatures of its past, information on how connected/ isolated it is today, and other information on what may predict its future, in its genome. The last fifteen years have witnessed a major change in how we can read genomes, and information from genomes of individuals and species can help better plan their conservation. 

All life on Earth harbours genetic material. Often called the blueprint of life, this genetic material could be DNA or RNA. We all know what DNA is, but another way to think of DNA is as data. All mammals, for example harbour between 2 to 3.5 billion bits of data in every one of their cells. The entire string of DNA data is called the whole genome. Recent changes in technology allow us to read whole genomes. We read short 151 letter long information bits many, many times, and piece together the whole genome by comparing it to a known reference. This helps us figure out where each of these 151 letter long pieces go in the 3 billion letter long word. Once we have read each position on an average of 10 or 20 times, we can be confident about it. If each genome is sequenced even ten times and only ten individuals are sampled, for mammals each dataset would consist of 200 to 350 billion bits of data!

Over time, the genome changes because of mutation, or spelling errors that creep in. Such spelling errors create variation, or differences between individual genomes in a population (a set of animals or plants). Similarly, large populations with many individuals will hold a variety of spellings or high genetic variation. Since DNA is the genetic blueprint, changes in the environment can also get reflected in these DNA spellings, with individuals with certain words in their genome surviving better than others under certain conditions. Changes in population size often changes the variety of letters observed at a specific location in the genome, or variation at a specific genomic position. Migration or movement of animals into a population adds new letters and variation. Taking all these together, the history of a population can be understood by comparing the DNA sequences of individuals. The challenge lies in the fact that every population faces all of these effects: changes in population size, environmental selection, migration and mutation, all at once, and it is difficult to separate the effects of different factors. Here, the big data comes to the rescue.

genome wildlife concept genomics

Photo Credit: Dr Anubhab Khan

Genomic data has allowed us to understand how a population has been affected by changes in climate, and whether it has the necessary genomic variation to survive in the face of ongoing climate change. Or how specific human activities have impacted a population in the past. We can understand more about the origins of a population. How susceptible is a population to certain infections? Or whether the individuals in a population are related to each other. Some of these large datasets have helped identify if certain populations are identical and should be managed together or separately. All of these questions help in the management and conservation of a population.

We have worked on such big genomic datasets for tigers, and our research has helped us identify which populations of tigers have high genomic variation and are more connected to other populations. We have identified populations that are small and have low genomic variation, but also seem to have mis-spelled or badly spelled words, or a propensity of ‘bad’ mutations. We have identified unknown relationships between individuals within populations and have suggested strategies that could allow these isolated populations to recover their genomic variation. It has been amazing to peek into animals lives through these big data approaches, and we hope these types of genomic dataset will contribute to understanding how biodiversity can continue to survive on this Earth.


Uma Ramakrishnan is fascinated by unravelling the mysteries of nature using DNA as tool. Along with her lab colleagues, she has spent the last fifteen years studying endangered species in India.She hopes such understanding will contribute to their conservation. Uma is a professor at the National Centre for Biological Sciences.

Dr. Anubhab Khan is a wildlife genomics expert. He has researching genetics of small isolated populations for past several years and has created and analyzed large scale genome sequencing data of tigers, elephants and small cats among others. He keen about population genetics, wildlife conservation and genome sequencing technologies. He is passionate about ending technology disparity in the world by either making advanced technologies and expertise available or by developing techniques that are affordable and accessible to all.

This series is an initiative by the Nature Conservation Foundation (NCF), under their programme ‘Nature Communications’ to encourage nature content in all Indian languages. To know more about birds and nature, Join The Flock


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

NASA’s Red Spider Nebula Pictures Leave the Internet in Awe

Published

on

By

NASA's Red Spider Nebula Pictures Leave the Internet in Awe

NASA has once again captivated the internet by releasing stunning photos of the Red Spider Nebula, a remarkable celestial object located 3,000 light-years away in the constellation of Sagittarius. The fiery red nebula has captured the imagination of space enthusiasts and social media users alike with its vivid colours and distinctive spider-like shape.

A Closer Look at the Red Spider Nebula

This extraordinary nebula is home to one of the hottest stars in the universe. The intense heat generated by the star causes the surrounding gas to form gigantic shockwaves, stretching up to 62 billion miles (100 billion kilometres) in height. These arcs of gas give the nebula its unique spider-leg appearance, while the bright pink core resembles the hourglass figure of a black widow spider. Set against a backdrop of twinkling stars, the nebula presents a magnificent and eerie visual spectacle.

NASA’s description of the Red Spider Nebula highlights its intriguing characteristics, with the orange waves of hot gas adding to its dramatic presentation. The gas, heated by the central star, radiates across space, creating patterns that are both striking and ethereal.

The Internet’s Fascination with the Nebula

Since NASA shared the images, social media has been buzzing with excitement. The post has amassed nearly six lakh likes, with thousands of users sharing their admiration. Many comments reflected awe at the nebula’s appearance, with one user noting that it looked like a “baby dragon,” while others described it as “breathtaking” and “amazing.” Some users even wondered what the nebula would look like up close, sparking discussions about the mysteries of space.

Continue Reading

Science

New DNA Evidence Uncovers a Separate Neanderthal Lineage

Published

on

By

New DNA Evidence Uncovers a Separate Neanderthal Lineage

In a groundbreaking discovery, researchers have identified a previously unknown Neanderthal lineage based on DNA from a fossil found in the Grotte Mandrin rock shelter in France. This lineage, belonging to an individual referred to as “Thorin,” reportedly evolved in isolation from other Neanderthal populations for nearly 50,000 years. The finding has offered a fresh perspective on the complexity of Neanderthal evolution and their varying survival strategies across Europe.

Evidence of Genetic Separation

The genetic analysis of Thorin’s DNA revealed that he belonged to a distinct Neanderthal population, separated from other European Neanderthals for tens of thousands of years. Unlike other Neanderthal fossils that show signs of interbreeding with both Neanderthals and early humans, Thorin’s DNA reportedly does not carry such markers, suggesting that his group remained isolated.

Interestingly, Thorin’s genetic profile shows a high percentage of identical gene pairs, a sign of a small, closely related population. This points to the likelihood of inbreeding, which was likely common in his isolated community.

A Separate Evolutionary Journey

Thorin’s lineage is believed to have diverged from other Neanderthal populations approximately 105,000 years ago. Despite living in the same region as other Neanderthal groups, Thorin’s DNA is reportedly more closely aligned with much older Neanderthal populations, suggesting his ancestors took a different evolutionary path.

This highlights the diverse evolutionary experiences of Neanderthal groups across Europe and suggests that while some populations were blending with early humans or other Neanderthals, others, like Thorin’s, remained separate.

The Mystery of Thorin’s Lineage

Although Thorin’s remains were discovered in a relatively well-preserved condition, researchers are still investigating how this lineage managed to remain isolated. The genetic uniqueness of this individual has led experts to believe that more discoveries in the future could help untangle the mysteries surrounding Neanderthal evolution. Further excavations at the Grotte Mandrin site may provide additional clues about Thorin’s group and why they avoided contact with other Neanderthals.

Continue Reading

Science

Voyager 1’s Thruster Fix Keeps It Flying in Deep Space

Published

on

By

Voyager 1's Thruster Fix Keeps It Flying in Deep Space

Voyager 1, the farthest human-made object from Earth, has recently undergone a critical adjustment to its thruster system as it navigates the vast expanse of interstellar space. Despite being operational for 47 years, the spacecraft required a clever fix to maintain its alignment and continue sending valuable data back to Earth.

Voyager 1’s Thruster Issue

Voyager 1, launched in 1977, faced difficulties with its thrusters, which are essential for keeping the spacecraft oriented correctly. The problem stemmed from a fuel tube clogging issue, a known problem that has affected the spacecraft for over two decades. The ageing spacecraft, which relies on a dwindling power supply, needed a strategic switch to a different set of thrusters to avoid potential communication loss.

The Complex Fix

Due to the spacecraft’s advanced age and diminished power, engineers at NASA’s Jet Propulsion Laboratory (JPL) had to approach the problem with extra caution. The team decided to repurpose one of Voyager 1’s attitude thruster branches, which had been inactive due to severe cold and power constraints.

To address this, they briefly activated a heater to warm the thruster before switching it on. This manoeuvre was critical to ensure the spacecraft remained properly oriented and capable of relaying data.

Voyager’s Ongoing Mission

Voyager 1, along with its twin Voyager 2, was originally launched to explore the outer reaches of the solar system. Over time, both spacecraft have provided invaluable information about distant planets and the space beyond our solar system. Despite the technical hurdles, Voyager 1 continues to send data and is expected to remain operational through at least the 50th anniversary of its mission in 2027.

Future Prospects

Engineers at JPL are committed to maintaining the spacecraft’s functionality as long as possible. The recent adjustments demonstrate the ongoing ingenuity required to manage and extend the life of these historic missions. As Voyager 1 ventures further into interstellar space, its ability to adapt to new challenges will continue to be proof of the longevity and resilience of human space exploration.

Continue Reading

Trending