Connect with us

Published

on

A species goes extinct when there are none of its kind left. In other words, extinction is about small numbers, so how does big data help us study extinction? Luckily for us, each individual of a species carries with it signatures of its past, information on how connected/ isolated it is today, and other information on what may predict its future, in its genome. The last fifteen years have witnessed a major change in how we can read genomes, and information from genomes of individuals and species can help better plan their conservation. 

All life on Earth harbours genetic material. Often called the blueprint of life, this genetic material could be DNA or RNA. We all know what DNA is, but another way to think of DNA is as data. All mammals, for example harbour between 2 to 3.5 billion bits of data in every one of their cells. The entire string of DNA data is called the whole genome. Recent changes in technology allow us to read whole genomes. We read short 151 letter long information bits many, many times, and piece together the whole genome by comparing it to a known reference. This helps us figure out where each of these 151 letter long pieces go in the 3 billion letter long word. Once we have read each position on an average of 10 or 20 times, we can be confident about it. If each genome is sequenced even ten times and only ten individuals are sampled, for mammals each dataset would consist of 200 to 350 billion bits of data!

Over time, the genome changes because of mutation, or spelling errors that creep in. Such spelling errors create variation, or differences between individual genomes in a population (a set of animals or plants). Similarly, large populations with many individuals will hold a variety of spellings or high genetic variation. Since DNA is the genetic blueprint, changes in the environment can also get reflected in these DNA spellings, with individuals with certain words in their genome surviving better than others under certain conditions. Changes in population size often changes the variety of letters observed at a specific location in the genome, or variation at a specific genomic position. Migration or movement of animals into a population adds new letters and variation. Taking all these together, the history of a population can be understood by comparing the DNA sequences of individuals. The challenge lies in the fact that every population faces all of these effects: changes in population size, environmental selection, migration and mutation, all at once, and it is difficult to separate the effects of different factors. Here, the big data comes to the rescue.

genome wildlife concept genomics

Photo Credit: Dr Anubhab Khan

Genomic data has allowed us to understand how a population has been affected by changes in climate, and whether it has the necessary genomic variation to survive in the face of ongoing climate change. Or how specific human activities have impacted a population in the past. We can understand more about the origins of a population. How susceptible is a population to certain infections? Or whether the individuals in a population are related to each other. Some of these large datasets have helped identify if certain populations are identical and should be managed together or separately. All of these questions help in the management and conservation of a population.

We have worked on such big genomic datasets for tigers, and our research has helped us identify which populations of tigers have high genomic variation and are more connected to other populations. We have identified populations that are small and have low genomic variation, but also seem to have mis-spelled or badly spelled words, or a propensity of ‘bad’ mutations. We have identified unknown relationships between individuals within populations and have suggested strategies that could allow these isolated populations to recover their genomic variation. It has been amazing to peek into animals lives through these big data approaches, and we hope these types of genomic dataset will contribute to understanding how biodiversity can continue to survive on this Earth.


Uma Ramakrishnan is fascinated by unravelling the mysteries of nature using DNA as tool. Along with her lab colleagues, she has spent the last fifteen years studying endangered species in India.She hopes such understanding will contribute to their conservation. Uma is a professor at the National Centre for Biological Sciences.

Dr. Anubhab Khan is a wildlife genomics expert. He has researching genetics of small isolated populations for past several years and has created and analyzed large scale genome sequencing data of tigers, elephants and small cats among others. He keen about population genetics, wildlife conservation and genome sequencing technologies. He is passionate about ending technology disparity in the world by either making advanced technologies and expertise available or by developing techniques that are affordable and accessible to all.

This series is an initiative by the Nature Conservation Foundation (NCF), under their programme ‘Nature Communications’ to encourage nature content in all Indian languages. To know more about birds and nature, Join The Flock


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

Scientists Reportedly Found a Potential Sign of Life on a Distant Planet: What You Need to Know

Published

on

By

Scientists Reportedly Found a Potential Sign of Life on a Distant Planet: What You Need to Know

A team of astronomers have reportedly discovered biological activity outside the solar system. The scientists have revealed that the distant planet, named K2-18 b, comprises more than one molecule in its atmosphere that potentially has been generated by living things. However, this revelation has made a sensation among astronomers across the world, more specifically for those who study biosignatures in exoplanet atmospheres.

 

According to report by Nature.com, K2-18 b is a planet that is smaller than Neptune. It lies at a distance of 38 parsecs above the Earth.

About the Discovery

Dimethyl sulphide (DMS) has been discovered by scientists from the University of Cambridge, UK, in the atmosphere of K2-18b. The DMS molecule is generated by living organisms, which has raised speculations about the potential for life on this distant planet. The scientists used the James Webb Space Telescope (JWST) to implement research. Also, the discovery happened when a molecule was detected in the starlight filtering through the planet’s atmosphere. These chemicals have raised curiosity amongst astronomers as they are generated by living organisms on the planet Earth.

This discovery first came into the light in the year 2023. However, the new revelations have been made as a result of the follow-up on similar findings. This time, the scientists used different wavelengths and a research strategy to support their discovery of molecules on the distant planet. .

Significance of this Discovery

For decades, scientists have been engrossed in studying life beyond Earth. Now that the pieces of evidence are hinting towards the potential existence of DMS or DMDS on K2-18 b. If proven, this will be a historic win for the scientists. Furthermore, this discovery is a step towards understanding planets from a broader perspective. Overall, more than 5,800 planets have been detected throughout the Universe.

Reason Behind Uncertainty by Other Researchers

The scientists are sceptical about this discovery as they doubt whether DMS or DMDS are really present or is K2-18 b is barren. While some of the researchers are not confident about the discovery, the expert team of scientists from the University of Cambridge, UK, is working extensively to provide a proven base to support their findings.

Continue Reading

Science

Space Veteran Astronaut Returns to Earth to Celebrate his Birthday on April 20

Published

on

By

Space Veteran Astronaut Returns to Earth to Celebrate his Birthday on April 20

The oldest veteran astronaut from NASA landed from the International Space Station on his 70th birthday. Donald Pettit, the U.S astronaut, reached Earth after seven months with his crew members Aleksey Ovchinin and Ivan Vagner, two Russian cosmonauts. The spacecraft Soyuz MS-26 launched on September 11, 2024 and came back to Earth on Saturday, April 20, 2025, at 6:20 AM local time in the steppes of Kazakhstan. He has made a remarkable history by landing on his birthday. He is a renowned name in the space world and has completed 13 spacewalk hours.

Legacy of Pettit

According to reported by space.com , This was the fourth flight of Pettit and Ovchinin, but the second for Vagner. Pettit worked for 590 days, Ovchinin for 595 days, and Vagner for 416 days in space until now, counted after this landing. This trio orbited Earth 3,520 times and finished this 93.3 million-mile journey throughout their mission. NASA astronaut and Expedition 73 flight engineer Nichole Ayers wrote on X on Saturday, saying goodbye today to Donald Pettit. It’s a bittersweet moment as Pettit had an amazing mission by inspiring many individuals while being here.

Back to Earth

The trio began their arrival at 5:57 PM EDT on Saturday, as the Soyuz spacecraft undocked from the station. The vehicle had deorbited burn for around two and a half hours, shedding its orbit, leaving the gumdrop-shaped capsule to bring all of them home. Anne McCain, Ayers, and Jonny Kim, together with JAXA astronaut and Commander of expedition 73, Takuya Onishi, Sergey Ryzhikov and Alexey Zubritsky, are the ones who are still in space.

Soyuz Spacecraft MS-26

It marked a significant spaceflight to the ISS (International Space Station), from its launch to landing, as it transported three well-experienced crew members, including Donald Pettit, Ivan Vagner, and Aleksey Ovchinin, to space for long-term microgravity research in the field of biology, physics, and material science. The spacecraft also docked as an emergency space vehicle for up to 220 days.

Pettit’s Achievements

Many people who follow the science of opportunity demonstrations and photographs of Earth by him know that he is a man of great contributions. Pettit has also helped to oversee the departure of Spacex’s Crew-9 mission on Dragon Freedom, along with Crew-10 on Dragon Endurance and the Cygnus departure of a cargo ship. He has also been a flight engineer for Expedition 30/31 in 2012. Pettit has made major contributions by discovering g-cups to drink coffee in space and polarised photography from space.

Continue Reading

Science

New Study Finds Hercules-Corona Borealis Great Wall Bigger and Nearer Than Thought

Published

on

By

New Study Finds Hercules-Corona Borealis Great Wall Bigger and Nearer Than Thought

Astronomers have revealed that the Hercules-Corona Borealis Great Wall, a massive network of galaxies, might be bigger than they realised. By mapping the cosmos with gamma-ray bursts (GRBs)—the brightest explosions in the universe—astronomers found that this structure is even bigger than previously estimated. Surprisingly, portions of it also lie significantly closer to Earth than previously believed, challenging fundamental assumptions about how the universe is structured and evolves.
This cosmic structure was first observed in 2014 — a dense galaxy forming a filament of a supercluster.

A new study now extends the researchers’ previous work, but with a wider GRB sample. Hakkila and Zsolt Bagoly, authors of the study, have refined the measurements. They detected a number of relatively nearby GRBs in their sample. The evidence also shows the Great Wall is larger and wider than previously predicted.

Gamma-Ray Bursts Expose Structure Too Large for Current Models

According to a Space.com report, the GRBs figure prominently in the early discovery and more recent growth of the Hercules–Corona Borealis Great Wall. These explosive outbursts — from either collapsing massive stars or colliding neutron stars — produce powerful jets that can be spotted over cosmological distances. Hakkila told the publication that GRBs act as another bright beacon for identifying galaxies, even those too faint to see directly. Because of their brightness, scientists can follow matter throughout the universe more distinctly than ever.

The Great Wall, over 10 billion light-years long, challenges the cosmological principle of uniform universe appearance. Its massive size indicates gaps in current theories and implies that the universe’s formation time was insufficient for such massive structures.

THESEUS May Reveal Full Scale of Cosmic Great Wall

NASA’s Fermi Gamma-ray Burst observations reveal 542 GRB events, but more data is needed to fully understand the Great Wall’s scope due to misidentified origins and sparse sampling. Hakkila points toward the upcoming ESA mission THESEUS — the Transient High Energy Sources and Early Universe Surveyor — as the next major leap.

The mission aims to dramatically expand the catalogue of known GRBs, particularly at extreme distances. “It could finally provide the observational leverage needed to map the Hercules–Corona Borealis Great Wall to its full extent,” Hakkila told Space.com, emphasising its role in refining our understanding of the universe’s large-scale structure.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Apple, Meta Fined as EU Presses Ahead with Tech Probes



Tesla Says India’s 100 Percent Car Tariffs Make Customers Anxious

Related Stories

Continue Reading

Trending