Connect with us

Published

on

A species goes extinct when there are none of its kind left. In other words, extinction is about small numbers, so how does big data help us study extinction? Luckily for us, each individual of a species carries with it signatures of its past, information on how connected/ isolated it is today, and other information on what may predict its future, in its genome. The last fifteen years have witnessed a major change in how we can read genomes, and information from genomes of individuals and species can help better plan their conservation. 

All life on Earth harbours genetic material. Often called the blueprint of life, this genetic material could be DNA or RNA. We all know what DNA is, but another way to think of DNA is as data. All mammals, for example harbour between 2 to 3.5 billion bits of data in every one of their cells. The entire string of DNA data is called the whole genome. Recent changes in technology allow us to read whole genomes. We read short 151 letter long information bits many, many times, and piece together the whole genome by comparing it to a known reference. This helps us figure out where each of these 151 letter long pieces go in the 3 billion letter long word. Once we have read each position on an average of 10 or 20 times, we can be confident about it. If each genome is sequenced even ten times and only ten individuals are sampled, for mammals each dataset would consist of 200 to 350 billion bits of data!

Over time, the genome changes because of mutation, or spelling errors that creep in. Such spelling errors create variation, or differences between individual genomes in a population (a set of animals or plants). Similarly, large populations with many individuals will hold a variety of spellings or high genetic variation. Since DNA is the genetic blueprint, changes in the environment can also get reflected in these DNA spellings, with individuals with certain words in their genome surviving better than others under certain conditions. Changes in population size often changes the variety of letters observed at a specific location in the genome, or variation at a specific genomic position. Migration or movement of animals into a population adds new letters and variation. Taking all these together, the history of a population can be understood by comparing the DNA sequences of individuals. The challenge lies in the fact that every population faces all of these effects: changes in population size, environmental selection, migration and mutation, all at once, and it is difficult to separate the effects of different factors. Here, the big data comes to the rescue.

genome wildlife concept genomics

Photo Credit: Dr Anubhab Khan

Genomic data has allowed us to understand how a population has been affected by changes in climate, and whether it has the necessary genomic variation to survive in the face of ongoing climate change. Or how specific human activities have impacted a population in the past. We can understand more about the origins of a population. How susceptible is a population to certain infections? Or whether the individuals in a population are related to each other. Some of these large datasets have helped identify if certain populations are identical and should be managed together or separately. All of these questions help in the management and conservation of a population.

We have worked on such big genomic datasets for tigers, and our research has helped us identify which populations of tigers have high genomic variation and are more connected to other populations. We have identified populations that are small and have low genomic variation, but also seem to have mis-spelled or badly spelled words, or a propensity of ‘bad’ mutations. We have identified unknown relationships between individuals within populations and have suggested strategies that could allow these isolated populations to recover their genomic variation. It has been amazing to peek into animals lives through these big data approaches, and we hope these types of genomic dataset will contribute to understanding how biodiversity can continue to survive on this Earth.


Uma Ramakrishnan is fascinated by unravelling the mysteries of nature using DNA as tool. Along with her lab colleagues, she has spent the last fifteen years studying endangered species in India.She hopes such understanding will contribute to their conservation. Uma is a professor at the National Centre for Biological Sciences.

Dr. Anubhab Khan is a wildlife genomics expert. He has researching genetics of small isolated populations for past several years and has created and analyzed large scale genome sequencing data of tigers, elephants and small cats among others. He keen about population genetics, wildlife conservation and genome sequencing technologies. He is passionate about ending technology disparity in the world by either making advanced technologies and expertise available or by developing techniques that are affordable and accessible to all.

This series is an initiative by the Nature Conservation Foundation (NCF), under their programme ‘Nature Communications’ to encourage nature content in all Indian languages. To know more about birds and nature, Join The Flock


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

ISRO Unveils World’s Largest 10-Tonne Vertical Mixer for Solid Propellants

Published

on

By

ISRO Unveils World’s Largest 10-Tonne Vertical Mixer for Solid Propellants

A significant advancement in India’s space technology has been achieved with the development of a 10-tonne vertical planetary mixer, the largest globally for solid propellant production. Designed and manufactured through a collaboration between the Indian Space Research Organisation (ISRO) and the Central Manufacturing Technology Institute (CMTI), this new equipment is expected to enhance efficiency and safety in the manufacturing of solid rocket motors. The handover ceremony took place on February 13 at CMTI, Bengaluru, where Satish Dhawan Space Centre (SDSC) Director A. Rajarajan received the mixer in the presence of ISRO Chairman S. Somanath and CMTI Director K. Prasad.

Enhancing Solid Propellant Production

As reported by ISRO, according to ISRO, the new vertical planetary mixer is a critical addition to India’s space propulsion systems. Solid propellants, which serve as the backbone of rocket motors, require precise and controlled mixing due to the sensitivity of the materials involved. The newly developed mixer, weighing approximately 150 tonnes with dimensions of 5.4 metres in length, 3.3 metres in breadth, and 8.7 metres in height, will improve the consistency, quality, and scalability of solid propellant production.

Towards Self-Reliance in Space Technology

As part of India’s push for self-reliance in critical technologies, the Department of Space has undertaken multiple initiatives to develop indigenous manufacturing capabilities. The realisation of this mixer underscores India’s increasing capability in aerospace engineering and manufacturing. The equipment has undergone successful factory-level acceptance tests and is set to play a key role in advancing the country’s space transportation systems.

Future Implications for ISRO’s Missions

With an emphasis on improving safety and productivity, the newly developed mixer is expected to streamline the process of solid propellant preparation for future ISRO missions. The technology is set to support upcoming launch vehicle developments, reinforcing India’s position in the global space industry.

Continue Reading

Science

NASA Lowers Risk of Asteroid 2024 YR4 Impact, Now Just 0.28 percent Chance

Published

on

By

NASA Lowers Risk of Asteroid 2024 YR4 Impact, Now Just 0.28 percent Chance

Concerns regarding asteroid 2024 YR4 have diminished, as NASA has revised the probability of its impact on Earth in 2032 from 1 in 32 to 1 in 360. The asteroid, which has an estimated diameter of 55 meters, was initially considered the most hazardous object on NASA’s Center for Near Earth Object Studies (CNEOS) Sentry Risk Table. New observational data gathered between February 18 and February 20 led to a reassessment, significantly lowering the projected threat level. According to NASA, the asteroid now holds a 99.72 percent chance of missing Earth entirely.

Orbital Data Leads to Reassessment

According to information provided by NASA, the latest findings were based on additional telescope observations, refining previous predictions. The data confirmed that the asteroid’s trajectory has been better understood, resulting in its classification at Level 1 on the Torino Scale, a system used to gauge the risk posed by near-Earth objects. Richard Binzel, the creator of the Torino Scale, told Space.com that further observations are expected to move 2024 YR4 to Level 0, indicating no cause for concern.

Comparisons with Other Asteroids

Despite the significant drop in risk, asteroid 2024 YR4 remains at the top of the Sentry Risk Table. The next most concerning object is 1950 DA, with a 0.039 percent chance of impacting Earth in the year 2880. Experts have emphasized that continued monitoring will provide further clarity on the asteroid’s path as it makes another approach in 2028.

Scientific Observations and Future Monitoring

David Rankin, an astronomer from the Catalina Sky Survey, explained that minor variations in measurement precision can cause large shifts in projected trajectories. Speaking to Space.com, he noted that uncertainties in an asteroid’s position are similar to moving a long stick slightly at one end, causing dramatic shifts at the other. Rankin reassured that further data collection would likely continue to reduce any remaining impact probability.

NASA has also noted a minor possibility that 2024 YR4 could impact the Moon, but the likelihood remains low. As the asteroid moves away from Earth, it will not be visible again to ground-based telescopes until 2028, when additional observations will refine its projected path. Scientists remain confident that its most probable outcome is to continue its orbit around the Sun without incident.

Continue Reading

Science

Blue Origin NS-30 Crew Announced: Everything You Need to Know

Published

on

By

Blue Origin NS-30 Crew Announced: Everything You Need to Know

The next suborbital space tourism mission by Blue Origin, known as NS-30, is set to take place at an undisclosed date. This will be the 30th launch of the company’s New Shepard rocket and its 10th crewed mission. The flight will take off from Blue Origin’s West Texas facility, carrying six individuals on a brief journey to suborbital space. The names of five crew members have been announced, while the identity of the sixth passenger remains undisclosed.

Crew Members and Their Backgrounds

According to the official announcement, the five confirmed passengers include Lane Bess, Jesús Calleja, Elaine Chia Hyde, Richard Scott, and Tushar Shah. Lane Bess, founder of Bess Ventures and Advisory, will be making his second journey with Blue Origin, having previously flown on the NS-19 mission in December 2021.

Jesús Calleja, a Spanish television host and adventurer, has explored extreme environments across the globe, including the Seven Summits and polar regions. Elaine Chia Hyde, an entrepreneur, physicist, and pilot, was born in Singapore, raised in Australia, and currently resides in Florida. Richard Scott serves as a reproductive endocrinologist and holds an adjunct professorship at Yale University and the University of South Carolina School of Medicine. Tushar Shah is a hedge fund partner based in New York City.

Mission Overview and Past Flights

The NS-30 mission will provide passengers with an approximately 10 to 12-minute experience, including a brief period of weightlessness and a view of Earth from suborbital space. The New Shepard capsule will return to Earth via parachute. The company has not disclosed ticket prices for the flight. Blue Origin’s first crewed mission occurred on July 20, 2021, with Amazon founder Jeff Bezos among the passengers. Further details regarding NS-30’s launch schedule and the identity of the final crew member are expected to be released in due course.

Continue Reading

Trending