Connect with us

Published

on

A species goes extinct when there are none of its kind left. In other words, extinction is about small numbers, so how does big data help us study extinction? Luckily for us, each individual of a species carries with it signatures of its past, information on how connected/ isolated it is today, and other information on what may predict its future, in its genome. The last fifteen years have witnessed a major change in how we can read genomes, and information from genomes of individuals and species can help better plan their conservation. 

All life on Earth harbours genetic material. Often called the blueprint of life, this genetic material could be DNA or RNA. We all know what DNA is, but another way to think of DNA is as data. All mammals, for example harbour between 2 to 3.5 billion bits of data in every one of their cells. The entire string of DNA data is called the whole genome. Recent changes in technology allow us to read whole genomes. We read short 151 letter long information bits many, many times, and piece together the whole genome by comparing it to a known reference. This helps us figure out where each of these 151 letter long pieces go in the 3 billion letter long word. Once we have read each position on an average of 10 or 20 times, we can be confident about it. If each genome is sequenced even ten times and only ten individuals are sampled, for mammals each dataset would consist of 200 to 350 billion bits of data!

Over time, the genome changes because of mutation, or spelling errors that creep in. Such spelling errors create variation, or differences between individual genomes in a population (a set of animals or plants). Similarly, large populations with many individuals will hold a variety of spellings or high genetic variation. Since DNA is the genetic blueprint, changes in the environment can also get reflected in these DNA spellings, with individuals with certain words in their genome surviving better than others under certain conditions. Changes in population size often changes the variety of letters observed at a specific location in the genome, or variation at a specific genomic position. Migration or movement of animals into a population adds new letters and variation. Taking all these together, the history of a population can be understood by comparing the DNA sequences of individuals. The challenge lies in the fact that every population faces all of these effects: changes in population size, environmental selection, migration and mutation, all at once, and it is difficult to separate the effects of different factors. Here, the big data comes to the rescue.

genome wildlife concept genomics

Photo Credit: Dr Anubhab Khan

Genomic data has allowed us to understand how a population has been affected by changes in climate, and whether it has the necessary genomic variation to survive in the face of ongoing climate change. Or how specific human activities have impacted a population in the past. We can understand more about the origins of a population. How susceptible is a population to certain infections? Or whether the individuals in a population are related to each other. Some of these large datasets have helped identify if certain populations are identical and should be managed together or separately. All of these questions help in the management and conservation of a population.

We have worked on such big genomic datasets for tigers, and our research has helped us identify which populations of tigers have high genomic variation and are more connected to other populations. We have identified populations that are small and have low genomic variation, but also seem to have mis-spelled or badly spelled words, or a propensity of ‘bad’ mutations. We have identified unknown relationships between individuals within populations and have suggested strategies that could allow these isolated populations to recover their genomic variation. It has been amazing to peek into animals lives through these big data approaches, and we hope these types of genomic dataset will contribute to understanding how biodiversity can continue to survive on this Earth.


Uma Ramakrishnan is fascinated by unravelling the mysteries of nature using DNA as tool. Along with her lab colleagues, she has spent the last fifteen years studying endangered species in India.She hopes such understanding will contribute to their conservation. Uma is a professor at the National Centre for Biological Sciences.

Dr. Anubhab Khan is a wildlife genomics expert. He has researching genetics of small isolated populations for past several years and has created and analyzed large scale genome sequencing data of tigers, elephants and small cats among others. He keen about population genetics, wildlife conservation and genome sequencing technologies. He is passionate about ending technology disparity in the world by either making advanced technologies and expertise available or by developing techniques that are affordable and accessible to all.

This series is an initiative by the Nature Conservation Foundation (NCF), under their programme ‘Nature Communications’ to encourage nature content in all Indian languages. To know more about birds and nature, Join The Flock


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

T Corona Borealis May Erupt Soon: Rare Nova Could Be Visible to Naked Eye

Published

on

By

T Corona Borealis May Erupt Soon: Rare Nova Could Be Visible to Naked Eye

T Corona Borealis is a binary star system in the Northern Crown constellation which is being monitored closely by astronomers worldwide for signs of a rare stellar eruption. The system consists of a white dwarf and a red giant orbiting each other with the white dwarf pulling material from its companion. The gradual accumulation of matter on the surface of dwarf white planet can lead to a thermonuclear explosion, known as a Nova. Scientists recorded the last erupted Nova in 1946. Now, there have been some indications that we might experience another nova outburst in the near future.

The researchers have recorded a brightening event in 2015 followed by a dimming in 2023, which has mirrored the pattern seen in the last eruption. This leads the experts to believe that there might be another nova outburt. If an eruption occurs T Corona Borealis could become visible to the naked eye and shine as brightly as the most prominent stars.

Accretion Activity and Expert Predictions

According to a study published in the Monthly Notices of the Royal Astronomical Society, the system has exhibited behaviour similar to the years leading up to its previous eruption. T Corona Borealis is one of only eleven recurrent novae observed in recorded history with eruptions noted in 1217, 1787, 1866 and 1946. As per the latest data available with the researchers, the accretion disc surrounding the white dwarf has became highly active and bright between 2015 and 2023. The study reveals that this heightened activity could trigger an eruption within a year or two.

There are multiple predictions from the scientists based on orbital analysis suggesting possible eruption dates. As per multiple reports, the Nova outburst might take place between March 27 or November 10 this year or June 25, 2026. The researchers has also suggested a theory regarding a potential third object influencing the binary system. Astronomers like Dr Léa Planquart of Université de Strasbourg and Dr Jeremy Shears of the British Astronomical Association have dismissed this theory citing the absence of supporting evidence. Both experts believe the activity of the accretion disc remains the most likely cause of an impending eruption.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Vivo X200 Ultra Confirmed to Feature Dedicated Camera Control Button; Design Teased



Facebook Introduces Friends Tab Without Recommended Content as Part of ‘OG’ Revamp

Related Stories

Continue Reading

Science

Scientists Spot a Key Difference in Matter and Antimatter Decay

Published

on

By

Scientists Spot a Key Difference in Matter and Antimatter Decay

A key difference has been observed in the behaviour of matter and antimatter particles by researchers working at a particle physics laboratory. A new measurement has been carried out that recorded the decay of a specific type of matter particle and its antimatter equivalent. This development is being seen as significant because it may explain why the universe is filled with matter while antimatter is nearly absent. The discovery has been described as a step towards solving one of physics’ biggest mysteries.

New Study Reveals Baryon Decay Difference

According to the research shared by the LHCb experiment at CERN and posted on the arXiv preprint server, a difference has been recorded in how a particle called the beauty-lambda baryon and its antimatter counterpart decay. These particles belong to the proton family and are classified as baryons. The report further added that the decay was observed into a proton and three mesons based on data collected between 2009 and 2018.

The evidence suggests that the decay of the beauty-lambda baryon differs from its antimatter twin. According to sources involved in the study the likelihood of this difference being a random occurrence is less than one in three million. Tim Gershon who is a particle physicist at the University of Warwick and part of the research team told Nature that this is the first time such a difference has been spotted in baryons.

Experts Say Findings Could Aid Understanding of Matter’s Prevalence

Tara Shears who is a particle physicist at the University of Liverpool stated to Nature that the observation could offer new insight into why matter is found in abundance while antimatter is not. She said that this imbalance is one of the major unresolved questions in physics.

Yuval Grossman a theoretical physicist from Cornell University mentioned to Nature that while the current measurement does not fully explain the imbalance it helps add a crucial piece to the puzzle.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Portronics Beem 520 Smart LED Projector With 2,200 Lumens Brightness, In-Built OTT Apps Launched in India



Honor Play 60 Price, Design, Colours, Key Features Surface Online; May Use a MediaTek Dimensity 6300 SoC

Continue Reading

Science

China Loses 26 Percent of Its Glaciers Due to Global Warming, Claims New Study

Published

on

By

China Loses 26 Percent of Its Glaciers Due to Global Warming, Claims New Study

China has reportedly witnessed a significant decline in glacier area over the last six decades. As per a new study published online,  the country has lost nearly 26 percent of its total glacier coverage since the 1960s. The study claims that the lost of such glacier area might be due to the rapid increase in global temperatures around the globe. Official data confirmed that close to 7000 small glaciers have entirely vanished from the landscape. The shrinking of glacier masses has been observed to accelerate over the past few years as warming trends continue to intensify.

Glacier Loss Confirmed by Chinese Academy of Sciences

According to a study released by the Northwest Institute of Eco-Environment and Resources under the Chinese Academy of Sciences it was recorded that China’s glacier area had reduced to nearly 46000 square kilometres by 2020. The total number of glaciers was stated to be around 69000 at that time. This marked a steep fall from an earlier figure of approximately 59000 square kilometres reported between 1960 and 1980 when glacier count stood at roughly 46000.

Impact of Glacier Retreat on Water Security and Environment

The melting of glaciers has raised concerns over freshwater availability across several regions. Environmental agencies have cautioned that the loss of glacier mass may result in higher competition for water resources in the years to come. The Tibetan Plateau which hosts a large portion of these glaciers has been referred to as the Third Pole owing to the vast ice reserves it holds.

Efforts to Slow Glacier Melting

Attempts have been made by Chinese authorities to slow the melting process through technological interventions. Artificial snow systems and snow blankets have been deployed as part of these initiatives.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Audio-Technica ATH-CKS50TW2 Star Wars-Themed Limited Edition TWS Earphones Launched: Price, Features



Portronics Beem 520 Smart LED Projector With 2,200 Lumens Brightness, In-Built OTT Apps Launched in India

Related Stories

Continue Reading

Trending