Connect with us

Published

on

The U.S. Department of Energy (DOE) and the White House have made offshore wind a centerpiece of plans to strengthen the nation’s energy infrastructure, announcing a goal to deploy 30 gigawatts of offshore wind by 2030 — a huge leap from the 42 megawatts (MW) currently in operation. Not only could this provide enough electricity to power 10 million American homes and cut carbon dioxide emissions by 78 million metric tons, it could also support as many as 77,000 new jobs.

The success of this initiative will rely, in large part, on partnerships to accelerate research and development (R&D) and establish new offshore systems in such an ambitious time frame. DOE’s National Renewable Energy Laboratory (NREL) is certain to be at the center of many of these efforts, contributing expertise in research related to offshore wind as well as building coalitions.

NREL has a long, successful track record of collaboration with partners in industry, agencies at all levels of government, and the research community. Offshore wind project partnerships have given NREL the insight needed to develop innovations that solve real-world problems and become the recognized standards for industry. For example, 80% of all prototypes for offshore wind floating platforms have been designed with the help of NREL open-source analysis tools — which NREL created through collaboration with laboratory partners.

With recent announcements of a national goal to deploy 30 gigawatts of offshore wind energy by 2030 and the go-ahead to install the first commercial-scale U.S. offshore wind project, NREL and its partners are poised to help meet this ambitious target. Semisubmersible offshore wind platforms accounted for 89% of substructures in floating wind projects either installed or announced in 2019. Other projects may use spar or tension-leg platform substructures. Graphics by Josh Bauer, NREL

NREL’s partners have helped the laboratory build a broad, in-depth understanding of the unique challenges of offshore environments. Offshore wind’s remote locations, deep waters, and extreme weather and ocean conditions present additional design, installation, and operation hurdles in the form of efficiency, cost, and durability.

Offshore wind collaborations bring together the research expertise of NREL staff with the know-how of industry partners, the policymaking perspective of government agencies, and additional support from other laboratories and universities. Researchers work with partners to characterize wind resourcesoptimize plants and turbinesanalyze techno-economic and market factors, and assess potential environmental impacts.

In particular, partners rely on NREL’s pioneering research to boost the performance and market viability of floating platform technologies needed to capture energy in the deepwater locations that account for nearly 60% of U.S. offshore wind resources. The laboratory’s researchers have most recently turned their attention to the integration of offshore wind energy with land-based utility systems to increase grid reliability, resilience, and efficiency.

Transmission of offshore wind energy relies on equipment such as undersea cables to carry power back to the mainland.

In Fiscal Year (FY) 2021, more than $10 million in funding for NREL offshore wind research projects came from partnerships with industry. The NREL team is working with more than 45 commercial, government, and research organizations on offshore, land-based, and distributed wind research projects in 2021.

This reflects the overall success of the laboratory in cultivating partnerships. Over the last 12 years, NREL has brought in $1 billion in partnership contracts, with more than 900 active partnership agreements and close to 600 unique partners in FY 2020.

With the nation’s first commercial-scale offshore wind development recently cleared for installation by the U.S. Department of the Interior off the coast of Massachusetts, the NREL offshore wind team hopes to engage with new partners to grow its collaborative base and make even more meaningful contributions to this burgeoning industry in the coming years.

Giving Industry the Tools To Compete

Industry partners know they can bank on the intellectual capital of experienced NREL researchers to develop and refine breakthrough offshore wind technologies and provide the balanced, market-savvy guidance needed for successful deployment. In addition, NREL offers industry partners hands-on research collaboration, technical assistance, deployment guidance, research facility use, and technology licensing.

“Collaboration with industry is key to making sure our R&D addresses real-world issues and priorities, while helping transfer scientific knowledge from the lab to the marketplace,” said NREL Principal Engineer Jeroen van Dam. “We’re giving offshore developers the tools to establish market parity — and giving the United States resources to join the field of international players.”

Through collaborations with the primary offshore wind regulators — the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement — and in coordination with the Business Network for Offshore Wind and the American Clean Power Association trade organizations, NREL is helping lead the development of industry standards that will define the requirements for utility-scale deployment of offshore wind in the United States. The team also works with individual companies — from startups to established corporations — including system operators, developers, original equipment manufacturers, energy suppliers, and investors. Scores of U.S. companies are currently involved in building, running, or supporting supply chains related to offshore systems.

The laboratory provides a credible source for objective expertise and validated data, bolstering rather than competing with industry efforts. NREL research focuses on early-stage technologies, where industry investments tend to be lean, while also targeting R&D priorities with potential for future commercialization. This has included collaboration on tools needed for industry to eventually develop larger, more powerful turbines and optimize system performance, efficiency, reliability, and affordability.

NREL takes broader economic factors into consideration when assessing the potential impact of offshore wind research and development. Offshore wind could trigger more than $12 billion per year in U.S. capital investment in offshore wind projects and spur significant activity and growth for ports, factories, and construction.

NREL also takes bigger economic factors into consideration when assessing the potential impact of offshore wind research and development. Eventually, it is estimated that offshore wind could trigger more than $12 billion per year in U.S. capital investment and spur significant activity and growth for ports, factories, and construction operations.

NREL analysts help developers and other industry partners gain crucial, unbiased understanding of the balance among potential offshore wind costs, revenues, and risks within the broader context of technical, legal, regulatory, tax, and policy issues. NREL market reports provide the data needed to support decision-making, including information critical to building the skilled workforce necessary for industry growth.

Building Coalitions To Spur Innovation

NREL has provided ongoing leadership to forge collaborative partnerships that bring together top minds from a range of sectors to form a virtual think tank of offshore wind research experts. In this convening role, NREL acts as a catalyst for exchanging information, tackling large research projects, and providing industry and policy decision makers with the body of scientific knowledge needed to champion new approaches.

NREL’s Walt Musial and Brent Rice join partners to tour the world’s first floating offshore wind farm off the coast of Peterhead, Scotland. Photo by Brent Rice, NREL

A major component of the newly announced U.S. offshore wind initiative announced by the White House calls on the National Offshore Wind R&D Consortium (NOWRDC) to refine the technology needed for deployment at a scale previously unprecedented in this country. The NOWRDC, which is managed by the New York State Energy Research and Development Authority (NYSERDA) with contributions from four other states plus DOE, benefits from the technical direction of NREL Offshore Wind Platform Lead Walt Musial, as well as the laboratory’s regular representation on the NOWRDC R&D Advisory Group and leadership of several projects.

“The developers and states really set the pace,” Musial said. “They’re ultimately the ones who will be responsible for rolling out and operating new offshore systems. Our job is to arm them with the information they need to maximize clean energy production in ways that will work best to help them achieve the lowest cost for their project.”

The laboratory’s involvement in coalition efforts reaches across the country and around the globe. Many International Energy Agency Wind Technology Collaboration Programme (IEA Wind) research tasks, which engage academia and industry across three continents, are led by NREL research staff. This includes development of a 15-MW reference turbine in partnership with IEA Wind and DOE’s Wind Energy Technologies Office to help design larger, more powerful, next-generation turbines.

NREL’s global and national partnerships are helping design larger, more powerful, next-generation offshore wind technologies, such as the IEA Wind 15-MW reference turbine.

NREL has a long, successful history of partnerships with international and U.S. universities and research institutions, including other national laboratories. The laboratory’s university affiliations encompass professors collaborating on NREL projects, NREL researchers advising graduate students, and projects supported by university funding. Consortia comprising multiple institutions and larger collaborations that involve several different agencies, universities, labs, and private-sector partners bring a range of perspectives to offshore wind solutions.

Collaborative efforts helmed by other U.S. government agencies, including DOE’s Advanced Research Projects Agency-Energy (ARPA-E) office and the National Oceanic and Atmospheric Administration (NOAA), also rely on NREL research expertise. For example, ARPA-E has funded the Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) program to develop new floating offshore wind turbines by tightly integrating control systems and design. NREL leads three ATLANTIS projects, working with one other national laboratory, four universities, and four industry partners.

Tapping One-of-a-Kind Offshore Wind Expertise

So, why do all of these organizations choose to partner with NREL on offshore wind research projects?

Certain collaborative undertakings rely on NREL’s high-performance Eagle supercomputer and world-class Flatirons Campus research facilities to put innovative offshore wind technologies and strategies through their paces. NREL software tools make it possible for researchers and partners to build models and simulate performance based on the laboratory’s formidable collections of data.

But NREL also offers one-of-a-kind expertise from its staff of 150 wind energy scientists, engineers, and analysts, many of whom contribute their multidisciplinary knowledge to offshore projects. With numerous cumulative decades of research experience, the team is able to tap a deep base of knowledge specific to offshore wind, as well as wider-reaching input from experts in related disciplines such as land-based wind power, other areas of clean energy generation, transmission, and integration. This cross-cutting approach has recently led scientists to uncover new efficiencies for converting wind energy to hydrogen that can be readily stored and used for a range of applications.

In surveys, multiple partners have given NREL high marks for its collaborative approach, distinct technical capabilities, and strong understanding of current needs and priorities.

“If we want the nation’s ambitious vision for offshore wind to become reality, we all need to pull together,” Musial said.

“These partnerships with industry, universities, other labs, and government agencies are crucial to developing the right technology, installing it at the right locations, and connecting it to the grid so that we can maximize offshore’s contribution to the country’s affordable clean energy mix.”

Article courtesy of the NREL, the U.S. Department of Energy.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Rivian CEO says plenty room for Scout and Rivian to coexist after partnership

Published

on

By

Rivian CEO says plenty room for Scout and Rivian to coexist after partnership

Rivian and VW have recently opened a partnership, despite the brands have very similar upcoming electric adventure vehicles with the Rivian R2 and VW Scout. But at a roundtable discussion with Rivian’s CEO RJ Scaringe, he said there’s more than enough room for the brands to coexist with each other.

Recent news about Rivian and VW’s software partnership, with VW investing over $5 billion into Rivian and forming a joint venture to adopt Rivian’s zonal architecture for the underpinnings of VW’s vehicle communications, has led to some interesting questions about how the details of the partnership would work out.

At the top of many people’s minds has been: isn’t it a little weird that the Rivian-like Scout brand will now essentially be competing with itself for the adventure EV market?

The question has been answered before – or perhaps more specifically non-answered – in press conferences around the official opening of the joint venture last week.

Generally, comments ran along the line of Rivian working to bring its software expertise to bear across VW’s brands, though the two companies have been a little shy to confirm whether Scout specifically would use Rivian’s software. After all, Scout is a bit of a spinoff from VW, and seems interested in showing some independence on that front, so it could be possible that they work on their own.

But in comments at a roundtable which Electrek attended today ahead of the LA Auto Show, it certainly seemed that Rivian will be working on Scout vehicles. Scaringe said that “we’re going to be supporting their full portfolio of brands – Porsche, Audi, Volkswagen, Scout.”

However, more importantly, Scaringe said that he’s “amused” by the focus that many have had on Scout, or those who consider it a potential threat to Rivian.

Scaringe estimates that there are “less than five” compelling EVs available for under $50k in the market today – and that’s perhaps being charitable. Meanwhile, if you go over to the gas world, there are gobs of choices out there for consumers, and yet they all manage to coexist without issue.

So Rivian has worked hard to distinguish itself from Tesla, for example, and thinks that even if Scout is inspired by Rivian, there’s still room for similar vehicles to coexist.

After all, there are many competing vehicles in many categories – some of which do indeed share underpinnings from separate companies. Just in the EV space, the Kia EV6 and Hyundai Ioniq 5 share a platform, and the Subaru Solterra and Toyota bZ4X are basically identical vehicles. So there has been plenty of history of companies working together to come out with similar or near-identical (rebadged) cars.

That’s not the case here, as Scout and Rivian will be very different in terms of platform and manufacturing. But sharing software shouldn’t be much of an issue – and even if we assume that Scout could cannibalize a segment of the market that Rivian otherwise had a good hold on, Rivian can still benefit from the partnership regardlessl.

Rivian’s main focus in recent years has been getting costs down. The story is that Rivian began scaling production in an extremely difficult time – trying to organize supply contracts at the historical peak of the auto industry (~2018), trying to start a manufacturing program during a global pandemic (2020/2021), and having little clout available to get on the better side of those contracts.

Now, Scaringe said, the situation is better: not only can Rivian show that it has a dominant position in its class – selling more premium SUVs than other EV and even gas brands – but it can also tout that it has support from one of the most established auto manufacturers in the world, Volkswagen. If VW – the second-largest automaker in the world – has enough faith in Rivian to invest $5.8 billion, then surely a supplier can trust that Rivian will stick around long enough to buy more than one set of parts.

Not only that, but the companies could potentially leverage their combined size for larger supply contracts. Say a certain microcontroller is needed for vehicle architecture across Rivian and also VW’s brands, then perhaps the joint venture could recognize much larger economies of scale.

The question also came up over whether Rivian might try to see if VW’s global sales network could help them to sell Rivians, but Scaringe shut that down, saying there is “no interest” in doing so. Rivian would rather stick to its plans of setting up its own stores and doing direct sales.


Charge your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai debuts Ioniq 9 with swivel seats to turn your 3-row SUV into a lounge

Published

on

By

Hyundai debuts Ioniq 9 with swivel seats to turn your 3-row SUV into a lounge

Hyundai has officially debuted its Ioniq 9 in advance of the LA Auto Show, with a concept car-like interior that lets you swivel the 2nd row seats and turn your car into a living room.

We’ve been hearing about the Ioniq 9 for some time now, and the time has finally come for its release.

In an event in advance of the LA Auto Show, starting this Friday and with a media preview day tomorrow (which Electrek will be in attendance for), Hyundai showed off the Ioniq 9 which will officially be unveiled at the Auto Show (you can watch via livestream) on the morning of Nov 21st.

The car is what we expected – a large, 3-row SUV, much like the EV9, the Ioniq 9’s cousin that is built on the same platform by Hyundai’s sister company, Kia.

But it also has some features we didn’t expect – like a little more clarity on that “lounge-like” interior we heard about, which turns out not to just be marketing fluff at all. It actually is like a lounge, complete with la-z-boy style footrests and swiveling seats so you can face your friends. More on that in a bit.

The Ioniq 9 comes with a perhaps excessively-large 110.3kWh battery (that extra 300Wh makes a big difference), offering up to 335 miles of range on the Long-Range RWD model with 19-inch wheels. 20- and 21-inch wheels are also available, we imagine with lower ranges.

The large battery will retain the E-GMP platform’s excellent DC charging performance, with the ability to charge from 10-80% in 24 minutes, assuming you’re connected to a capable charger (Hyundai says 350kW “under optimal conditions”).

The Long-Range model will have a 160kW (215hp) rear motor, and an additional 70kW (94hp) front motor if you get the AWD model. Performance AWD will be available with 160kW motors on both axles.

The long range RWD model will do 0-100km/h (0-62mph) in 9.4 seconds, AWD in 6.7 seconds, and Performance AWD in 5.2 seconds (or, if you prefer 0-60, the Performance model can do it in 4.9).

The vehicle is large, as you’d expect out of a 3-row SUV, at 5,060mm (199.2in) long, 1,980mm (78in) wide and 1,790mm (70.5in) high. This is 2 inches longer than its sister car the EV9, and 1 inch less long than the Rivian R1S.

Exterior design keeps some of the design language of the (excellent) Ioniq 5, but larger and more rounded-off. In particular, it keeps some of the dot-matrix/pixel aesthetic of the lights.

I have to say I don’t love the roundedness of it – the design of the Ioniq 5 feels extremely consistent with a lot of straight lines throughout, whereas the rounded hood and extended rear end of the 9 spoil that consistency to some extent (and speaking of the rear… it almost seems a little hearse-like, to me).

Incidentally, with the Ioniq 5 and EV6, one is more boxy and the other is more rounded – and the same thing has happened with the Ioniq 9 and EV9, only in reverse. The Ioniq 9 is more rounded and the EV9 is more boxy. So, once again, these two similar vehicles have differentiated themselves enough that we expect the market will be split, with many customers liking one and disliking the other, meaning little cannibalization between the two.

The interior seems incredibly spacious, though so far we haven’t had a chance to experience it ourselves. Most 3-row SUVs in this size class do have somewhat cramped third rows, so we’re curious if Hyundai has managed to do some sort of magic in that respect.

And in addition to rear and frunk storage (with a frunk capable of holding 88L in RWD and 52L in AWD models), the center console offers a large amount of storage inside (18.2L, split between an upper and lower tray), and can be slid back and forth to allow easier movement between front or rear seats.

And speaking of magic, Hyundai has actually done something new here – an interior with swiveling middle seats, to turn the car into a lounge.

We’ve seen similar interiors on countless concept cars, but understandably they never make it to production. It’s definitely an attention-grabbing feature, but who really uses their vehicles like that?

Well, Hyundai thinks that people will, so it’s offered swiveling 2nd-row seats to allow for this. However, it says that these seats will be available “in selected markets only,” and it has declined to say exactly which markets those are yet. We also imagine this will only apply to the 6-seat configuration, rather than 7-seat.

The seats don’t just swivel though, they also recline and have a leg rest. Hyundai is calling these its “Relaxation Seats,” and the first and second row seats will both be capable of this feat. It says this will be particularly useful for people who want to get comfortable during vehicle charging (though, on an optimal 350kW charger, 24 minutes is hardly much time for a nap).

And that charging will be accomplished via a NACS port – making this, we think, the first non-Tesla vehicle to debut and be sold with only a NACS port at any time in the model’s existence. Other E-GMP vehicles are switching over to NACS, but the Ioniq 5 for example has been out for many years now, so there are lots of CCS Ioniq 5s out there, but that won’t be the case for the Ioniq 9.

Like other E-GMP vehicles, it will be able to discharge the battery via vehicle-to-load (V2L) to power devices, though we didn’t get clarity on how much total output it will have. Other E-GMP cars usually top out around 1.8kW, so enough to run some regular outlets, but not enough to power a house.

The Hyundai Ioniq 9 will be available in Korea and the US in the first half of 2025, and then will come to Europe and other markets later. The US version will be built at Hyundai’s plant in Georgia – another example of a car brought to the US by the domestic sourcing provisions of President Biden’s EV push (and which could be put into Jeopardy if Dumb & Dumber get their way in attempting to kill this boon for US manufacturing).

We don’t have pricing or all tech specs yet, so stay tuned as there’s still more to come.

Also, you can watch the official debut livestream over at Hyundai’s website, starting at 9:10am PST November 21st. And Electrek will be at the LA Auto Show to ask around and see if we can get any lingering questions answered.


Charge your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Honda unveils all-solid-state EV battery production line for the first time

Published

on

By

Honda unveils all-solid-state EV battery production line for the first time

Honda has been promising to unlock the power of all-solid-state EV batteries for several years. Today, we are getting our first look at the progress. Honda unveiled a demonstration production line as it continues to advance promising new battery technology.

By 2050, Honda wants all its products and corporate activities to be carbon neutral. Although electric vehicles are essential to this mission, Honda believes improvements are needed.

Since the battery is such a critical component for EVs, the company aims to unlock more driving range at a lower cost with new chemistries.

Honda is developing all-solid-state EV batteries in-house to power up its next-gen vehicles. It’s not “merely trying to establish a lab-level technology,” Honda is eyeing mass production in the coming years.

On Wednesday, Honda unveiled its demonstration production line for all-solid-state EV batteries, giving us our first look at the progress.

The line is located at Honda’s R&D facility in Sakura City, Tochigi Prefecture, Japan. Honda will use the demo line as a preface for mass production while determining the basic specifications of the battery cells.

Honda-all-solid-state-EV-batteries
Honda’s new facility where the all-solid-state EV battery demo production line is located (Source: Honda)

Honda is launching EVs with all-solid-state batteries

Honda plans to launch electric models with the new all-solid-state battery tech in the “second half of the 2020s.”

The new demo line replicates the processes required for mass production. It covers around 295,000 ft2 (27,400 m2) and is already equipped with the tools to verify each production process, including weighing and mixing electrode materials, coating, and roll pressing electrode assemblies. The line also supports the formation of cells and the assembly of the module.

After the new facility was completed this spring, all the equipment needed for verification is now in place.

Honda plans to begin production on the new demo line in January 2025. With a highly efficient production process and a wide range of use cases, including automobiles, motorcycles, and aircraft, Honda aims to slash battery costs.

To speed up development, Honda is conducting “speedy research” in two main areas: material specifications and manufacturing methods.

The company plans to start mass producing all-solid-state EV batteries in the second half of the 2020s.

Ahead of its 2050 carbon neutrality target, Honda aims for 100% of global vehicle sales to be EV or FCEV by 2040. Honda believes the new battery tech will be its differentiator.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending