Connect with us

Published

on

The U.S. Department of Energy (DOE) and the White House have made offshore wind a centerpiece of plans to strengthen the nation’s energy infrastructure, announcing a goal to deploy 30 gigawatts of offshore wind by 2030 — a huge leap from the 42 megawatts (MW) currently in operation. Not only could this provide enough electricity to power 10 million American homes and cut carbon dioxide emissions by 78 million metric tons, it could also support as many as 77,000 new jobs.

The success of this initiative will rely, in large part, on partnerships to accelerate research and development (R&D) and establish new offshore systems in such an ambitious time frame. DOE’s National Renewable Energy Laboratory (NREL) is certain to be at the center of many of these efforts, contributing expertise in research related to offshore wind as well as building coalitions.

NREL has a long, successful track record of collaboration with partners in industry, agencies at all levels of government, and the research community. Offshore wind project partnerships have given NREL the insight needed to develop innovations that solve real-world problems and become the recognized standards for industry. For example, 80% of all prototypes for offshore wind floating platforms have been designed with the help of NREL open-source analysis tools — which NREL created through collaboration with laboratory partners.

With recent announcements of a national goal to deploy 30 gigawatts of offshore wind energy by 2030 and the go-ahead to install the first commercial-scale U.S. offshore wind project, NREL and its partners are poised to help meet this ambitious target. Semisubmersible offshore wind platforms accounted for 89% of substructures in floating wind projects either installed or announced in 2019. Other projects may use spar or tension-leg platform substructures. Graphics by Josh Bauer, NREL

NREL’s partners have helped the laboratory build a broad, in-depth understanding of the unique challenges of offshore environments. Offshore wind’s remote locations, deep waters, and extreme weather and ocean conditions present additional design, installation, and operation hurdles in the form of efficiency, cost, and durability.

Offshore wind collaborations bring together the research expertise of NREL staff with the know-how of industry partners, the policymaking perspective of government agencies, and additional support from other laboratories and universities. Researchers work with partners to characterize wind resourcesoptimize plants and turbinesanalyze techno-economic and market factors, and assess potential environmental impacts.

In particular, partners rely on NREL’s pioneering research to boost the performance and market viability of floating platform technologies needed to capture energy in the deepwater locations that account for nearly 60% of U.S. offshore wind resources. The laboratory’s researchers have most recently turned their attention to the integration of offshore wind energy with land-based utility systems to increase grid reliability, resilience, and efficiency.

Transmission of offshore wind energy relies on equipment such as undersea cables to carry power back to the mainland.

In Fiscal Year (FY) 2021, more than $10 million in funding for NREL offshore wind research projects came from partnerships with industry. The NREL team is working with more than 45 commercial, government, and research organizations on offshore, land-based, and distributed wind research projects in 2021.

This reflects the overall success of the laboratory in cultivating partnerships. Over the last 12 years, NREL has brought in $1 billion in partnership contracts, with more than 900 active partnership agreements and close to 600 unique partners in FY 2020.

With the nation’s first commercial-scale offshore wind development recently cleared for installation by the U.S. Department of the Interior off the coast of Massachusetts, the NREL offshore wind team hopes to engage with new partners to grow its collaborative base and make even more meaningful contributions to this burgeoning industry in the coming years.

Giving Industry the Tools To Compete

Industry partners know they can bank on the intellectual capital of experienced NREL researchers to develop and refine breakthrough offshore wind technologies and provide the balanced, market-savvy guidance needed for successful deployment. In addition, NREL offers industry partners hands-on research collaboration, technical assistance, deployment guidance, research facility use, and technology licensing.

“Collaboration with industry is key to making sure our R&D addresses real-world issues and priorities, while helping transfer scientific knowledge from the lab to the marketplace,” said NREL Principal Engineer Jeroen van Dam. “We’re giving offshore developers the tools to establish market parity — and giving the United States resources to join the field of international players.”

Through collaborations with the primary offshore wind regulators — the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement — and in coordination with the Business Network for Offshore Wind and the American Clean Power Association trade organizations, NREL is helping lead the development of industry standards that will define the requirements for utility-scale deployment of offshore wind in the United States. The team also works with individual companies — from startups to established corporations — including system operators, developers, original equipment manufacturers, energy suppliers, and investors. Scores of U.S. companies are currently involved in building, running, or supporting supply chains related to offshore systems.

The laboratory provides a credible source for objective expertise and validated data, bolstering rather than competing with industry efforts. NREL research focuses on early-stage technologies, where industry investments tend to be lean, while also targeting R&D priorities with potential for future commercialization. This has included collaboration on tools needed for industry to eventually develop larger, more powerful turbines and optimize system performance, efficiency, reliability, and affordability.

NREL takes broader economic factors into consideration when assessing the potential impact of offshore wind research and development. Offshore wind could trigger more than $12 billion per year in U.S. capital investment in offshore wind projects and spur significant activity and growth for ports, factories, and construction.

NREL also takes bigger economic factors into consideration when assessing the potential impact of offshore wind research and development. Eventually, it is estimated that offshore wind could trigger more than $12 billion per year in U.S. capital investment and spur significant activity and growth for ports, factories, and construction operations.

NREL analysts help developers and other industry partners gain crucial, unbiased understanding of the balance among potential offshore wind costs, revenues, and risks within the broader context of technical, legal, regulatory, tax, and policy issues. NREL market reports provide the data needed to support decision-making, including information critical to building the skilled workforce necessary for industry growth.

Building Coalitions To Spur Innovation

NREL has provided ongoing leadership to forge collaborative partnerships that bring together top minds from a range of sectors to form a virtual think tank of offshore wind research experts. In this convening role, NREL acts as a catalyst for exchanging information, tackling large research projects, and providing industry and policy decision makers with the body of scientific knowledge needed to champion new approaches.

NREL’s Walt Musial and Brent Rice join partners to tour the world’s first floating offshore wind farm off the coast of Peterhead, Scotland. Photo by Brent Rice, NREL

A major component of the newly announced U.S. offshore wind initiative announced by the White House calls on the National Offshore Wind R&D Consortium (NOWRDC) to refine the technology needed for deployment at a scale previously unprecedented in this country. The NOWRDC, which is managed by the New York State Energy Research and Development Authority (NYSERDA) with contributions from four other states plus DOE, benefits from the technical direction of NREL Offshore Wind Platform Lead Walt Musial, as well as the laboratory’s regular representation on the NOWRDC R&D Advisory Group and leadership of several projects.

“The developers and states really set the pace,” Musial said. “They’re ultimately the ones who will be responsible for rolling out and operating new offshore systems. Our job is to arm them with the information they need to maximize clean energy production in ways that will work best to help them achieve the lowest cost for their project.”

The laboratory’s involvement in coalition efforts reaches across the country and around the globe. Many International Energy Agency Wind Technology Collaboration Programme (IEA Wind) research tasks, which engage academia and industry across three continents, are led by NREL research staff. This includes development of a 15-MW reference turbine in partnership with IEA Wind and DOE’s Wind Energy Technologies Office to help design larger, more powerful, next-generation turbines.

NREL’s global and national partnerships are helping design larger, more powerful, next-generation offshore wind technologies, such as the IEA Wind 15-MW reference turbine.

NREL has a long, successful history of partnerships with international and U.S. universities and research institutions, including other national laboratories. The laboratory’s university affiliations encompass professors collaborating on NREL projects, NREL researchers advising graduate students, and projects supported by university funding. Consortia comprising multiple institutions and larger collaborations that involve several different agencies, universities, labs, and private-sector partners bring a range of perspectives to offshore wind solutions.

Collaborative efforts helmed by other U.S. government agencies, including DOE’s Advanced Research Projects Agency-Energy (ARPA-E) office and the National Oceanic and Atmospheric Administration (NOAA), also rely on NREL research expertise. For example, ARPA-E has funded the Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) program to develop new floating offshore wind turbines by tightly integrating control systems and design. NREL leads three ATLANTIS projects, working with one other national laboratory, four universities, and four industry partners.

Tapping One-of-a-Kind Offshore Wind Expertise

So, why do all of these organizations choose to partner with NREL on offshore wind research projects?

Certain collaborative undertakings rely on NREL’s high-performance Eagle supercomputer and world-class Flatirons Campus research facilities to put innovative offshore wind technologies and strategies through their paces. NREL software tools make it possible for researchers and partners to build models and simulate performance based on the laboratory’s formidable collections of data.

But NREL also offers one-of-a-kind expertise from its staff of 150 wind energy scientists, engineers, and analysts, many of whom contribute their multidisciplinary knowledge to offshore projects. With numerous cumulative decades of research experience, the team is able to tap a deep base of knowledge specific to offshore wind, as well as wider-reaching input from experts in related disciplines such as land-based wind power, other areas of clean energy generation, transmission, and integration. This cross-cutting approach has recently led scientists to uncover new efficiencies for converting wind energy to hydrogen that can be readily stored and used for a range of applications.

In surveys, multiple partners have given NREL high marks for its collaborative approach, distinct technical capabilities, and strong understanding of current needs and priorities.

“If we want the nation’s ambitious vision for offshore wind to become reality, we all need to pull together,” Musial said.

“These partnerships with industry, universities, other labs, and government agencies are crucial to developing the right technology, installing it at the right locations, and connecting it to the grid so that we can maximize offshore’s contribution to the country’s affordable clean energy mix.”

Article courtesy of the NREL, the U.S. Department of Energy.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla’s retro-futuristic diner and Supercharger is here and it looks sick

Published

on

By

Tesla's retro-futuristic diner and Supercharger is here and it looks sick

Tesla’s retro-futuristic diner with Superchargers and giant movie screens is ready to open, and I have to admit, it looks pretty sick.

This project has been in the works for a long time.

In 2018, Elon Musk said that Tesla planned to open an “old school drive-in, roller skates & rock restaurant at one of the new Tesla Supercharger locations in Los Angeles.” It was yet another “Is he joking?” kind of Elon Musk idea, but he wasn’t kidding.

A few months later, Tesla applied for building permits for “a restaurant and Supercharger station” at a location in Santa Monica. However, the project stalled for a long time, apparently due to local regulations.

Advertisement – scroll for more content

Nevertheless, Tesla still moved forward with a Supercharger at the location, but it had to move the diner project to Hollywood. In 2022, Tesla filed the construction plans with the city, giving us the first look at what the automaker intends to build.

In 2023, the automaker broke ground on the site of the diner.

7 years after being originally announced, the project appears now ready to open:

Musk said that he ate at the diner last night and claimed that it is “one of the coolest spots in LA.” He didn’t say when it will open, but Tesla vehicles have been spotted at Supercharger and people appear to be testing the dinning experience inside.

A Tesla Optimus Robot can be seen inside the diner on a test rack. It looks like Tesla might use one for some tasks inside the diner.

Earlier this year, Tesla integrated the diner into its mobile app – hinting at some interaction through the app – possibly ordering from it.

Electrek’s Take

I think it looks pretty cool. I am a fan of the design and concept.

However, considering the state of the Tesla community, I don’t think I’d like the vibes. That said, it looks like Tesla isn’t prominently pushing its branding on the diner.

You can come and charge there, but it looks like Tesla is also aiming to get a wider clientele just for dining.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Westinghouse plans to build 10 large nuclear reactors in U.S., interim CEO tells Trump

Published

on

By

Westinghouse plans to build 10 large nuclear reactors in U.S., interim CEO tells Trump

Plant Vogtle Nuclear Power Plant in Waynesboro, GA, August 15, 2024.

Van Applegate | CNBC

Westinghouse plans to build 10 large nuclear reactors in the U.S. with construction to begin by 2030, interim CEO Dan Sumner told President Donald Trump at a roundtable in Pittsburgh on Tuesday.

Westinghouse’s big AP1000 reactor generates enough electricity to power more than 750,000 homes, according to the company. Building 10 of these reactors would drive $75 billion of economic value across the U.S. and $6 billion in Pennsylvania, Sumner said.

The Westinghouse executive laid out the plan to Trump during a conference on energy and artificial intelligence at Carnegie Mellon University. Technology, energy and financial executives announced more than $90 billion of investment in data centers and power infrastructure at the conference, according to the office of Sen. Dave McCormick, who organized the event.

Trump issued four executive orders in May that aim to quadruple nuclear power in the U.S. by 2050. The president called for the U.S. to have 10 nuclear plants under construction by 2050. He ordered a “wholesale revision” of the Nuclear Regulatory Commission’s rules and guidelines.

The U.S. has built only two new nuclear reactors over the past 30 years, both of which were Westinghouse AP1000s at Plant Vogtle in Waynesboro, Georgia. The project notoriously came in $18 billion over budget and seven years behind schedule, contributing to the bankruptcy of Westinghouse.

The industry stalwart emerged from bankruptcy in 2018 and us now owned by Canadian uranium miner Cameco and Brookfield Asset Management.

Westinghouse announced a partnership with Google on Tuesday to use AI tools to make the construction of AP1000s an “efficient, repeatable process,” according to the company.

Catch up on the latest energy news from CNBC Pro:

Continue Reading

Environment

Hyundai’s electric minivan sheds its camo: Check out the new Staria EV

Published

on

By

Hyundai's electric minivan sheds its camo: Check out the new Staria EV

Hyundai’s electric minivan is finally out in the open. The Staria EV was caught without camo near Hyundai’s R&D center in Korea, giving us a closer look at the electric minivan undisguised.

Hyundai’s electric minivan drops camo ahead of debut

The Staria arrived in 2021 as the successor to the Starex, Hyundai’s multi-purpose vehicle (MPV). Although the Staria has received several updates throughout the years, 2026 will be its biggest by far.

Hyundai will launch the Staria EV, its first electric minivan. Like the current model, the 2026 Staria will be available in several different configurations, including cargo, passenger, and even a camper version.

We’ve seen the Staria EV out in public a few times already. Last month, we got a glimpse of it while driving on public roads in Korea.

Advertisement – scroll for more content

Despite the camouflage, new EV-like design elements were visible, including updated LED headlights and a full-length light bar. Although it’s still unclear, the electric version appears to be roughly the same size as the current Staria from the side, but slightly wider from the front.

New images posted on the South Korean forum Clien reveal a test car, expected to be Hyundai’s Staria electric minivan, without camo.

Like most Hyundai test cars, the prototype has a black front and a grey body. It still features a similar look to other prototypes we’ve seen, but you can clearly see the new facelift.

Earlier this year, a Staria EV was spotted in a parking lot in Korea, featuring a similar look. The electric version is nearly identical to the Staria Lounge, but with an added charge port and closed-off grille.

The Hyundai Staria EV is expected to make its global debut later this year. Technical details have yet to be revealed, but it’s expected to feature either a 76 kWh or 84 kWh battery, providing a range of around 350 km (217 miles) to 400 km (249 miles).

Hyundai's-first-electric-minivan
Hyundai Staria Lounge (Source: Hyundai)

Hyundai’s electric SUV arrives after Kia introduced its first electric van, the PV5, which launched in Europe and Korea earlier this year.

In Europe, the Kia Passenger PV5 model is available with two battery pack options: 51.5 kWh and 71.2 kWh, providing WLTP ranges of 179 miles and 249 miles, respectively. The Cargo version has a WLTP range of 181 miles or 247 miles.

Source: TheKoreanCarBlog, Clien

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending