Connect with us

Published

on

A seat on a spaceship ride with billionaire Jeff Bezos went for $28 million (roughly Rs. 205 crores) during a live auction on Saturday, concluding the month-long bidding process for the sightseeing trip on the Blue Origin’s maiden voyage next month.

Within four minutes of the open of Saturday’s live phone auction, bids reached beyond $20 million (roughly Rs. 150 crores). The bidding closed seven minutes after the auction began. The identity of the winner – presumably an ultra-wealthy space aficionado – was not immediately disclosed.

The July 20 launch of Blue Origin’s New Shepard booster from West Texas would be a landmark moment as US firms strive toward a new era of private commercial space travel.

Blue Origin’s founder and Amazon executive Bezos, the world’s wealthiest man and a lifelong space enthusiast, has been racing against fellow aspiring billionaire aeronauts Richard Branson and Elon Musk to be the first of the three to travel beyond Earth’s atmosphere.

“To see the earth from space, changes you. It changes your relationship with this planet, with humanity,” Bezos said in a video before the final bidding took place, adding that his brother Mark will join him on the trip.

As the month-long bidding process leading up to the live auction closed on Thursday, the winning figure stood at $4.8 million (roughly Rs. 38 crores), fueled by entries from more than 6,000 people from at least 143 countries, Blue Origin said.

“Putting the world’s richest man and one of the most recognised figures in business into space is a massive advertisement for space as a domain for exploration, industrialisation, and investment,” Morgan Stanley analyst Adam Jonas told clients earlier this month.

While the funds raised from the event are earmarked for charity, Blue Origin is hoping to galvanise enthusiasm for its nascent suborbital tourism business.

However, Branson, who founded Virgin Galactic, may attempt to steal Bezos’ thunder by joining a possible test flight to the edge of space over the July 4 weekend aboard Virgin’s VSS Unity spaceplane, one person familiar with the matter said.

The race is fueled by optimism that space travel will become mainstream as nascent technology is proven and costs fall, fueling what UBS estimates could be a $3 billion (roughly Rs. 21,950 crores) annual tourism market by 2030.

Blue Origin and Virgin Galactic, as well as Musk’s SpaceX, have also discussed using their rockets to link far-flung global cities. UBS says that long-haul travel market could be worth more than $20 billion (roughly Rs. 150 crores), though several barriers such as air-safety certification could derail the plans.

Blue Origin has not divulged its pricing strategy for future trips.

Reuters reported in 2018 that Blue Origin was planning to charge passengers at least $200,000 (roughly Rs. 1.5 crores) for the ride, based on a market study and other considerations, though its thinking may have changed.

© Thomson Reuters 2021


Interested in cryptocurrency? We discuss all things crypto with WazirX CEO Nischal Shetty and WeekendInvesting founder Alok Jain on Orbital, the Gadgets 360 podcast. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

Scientists Predict Under Sea Volcano Eruption Near Oregon Coast in 2025

Published

on

By

Scientists Predict Under Sea Volcano Eruption Near Oregon Coast in 2025

An undersea volcano situated roughly 470 kilometers off Oregon’s coastline, Axial Seamount, is showing signs of imminent activity. Researchers have noted telltale signals such as ground deformation, heightened seismic activity, and magma accumulation beneath the surface. These observations have led to a forecast suggesting that the volcano could erupt as early as 2025. This prediction represents a significant milestone in volcanic monitoring, as it is rare for scientists to anticipate eruptions with such precision.

Advanced Monitoring Reveals Key Indicators

According to the study Axial Seamount Has Suddenly Woken Up! An Update on the Latest Inflation and Seismic Data and a New Eruption Forecast presented at the American Geophysical Union meeting, Axial Seamount is among the most closely monitored submarine volcanoes globally. Instruments installed on the seafloor record real-time data, enabling scientists to study its activity continuously. Notable patterns, such as surface swelling and earthquake swarms similar to those preceding the volcano’s 2015 eruption, have been observed again, suggesting a repeat event may be on the horizon.

Insights from Predictive Technologies

As per reports, the potential eruption has also spurred advancements in predictive models. Artificial intelligence is being employed to analyse seismic data collected during the 2015 eruption. This technology has identified specific patterns linked to magma movement, which could refine forecasting accuracy. Researchers view Axial Seamount as a critical testing ground for these innovations, which, if successful, could inform strategies for monitoring other volcanic systems.

Potential Impacts and Global Significance

While Axial Seamount poses minimal immediate threat to human populations, the 2022 Hunga Tonga-Hunga Ha’apai eruption, which caused a Pacific-wide tsunami, underscores the need for preparedness. Enhanced forecasting could provide timely warnings for coastal regions at risk. As the forecasted eruption draws closer, efforts to monitor and study the volcano will continue, with findings expected to have implications far beyond the Pacific Northwest.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Organic Molecules in Space: A Key to Understanding Life’s Cosmic Origins

Continue Reading

Science

Organic Molecules in Space: A Key to Understanding Life’s Cosmic Origins

Published

on

By

Organic Molecules in Space: A Key to Understanding Life's Cosmic Origins

As researchers delve into the cosmos, organic molecules—the building blocks of life—emerge as a recurring theme, hinting at answers to some of science’s most profound questions. Recent studies, including data from missions like the European Space Agency’s Rosetta and NASA’s Osiris-Rex, continue to reveal the ubiquity of these compounds across the universe. According to reports, these discoveries shed light on how planets like Earth may have acquired the raw materials for life long before the Sun formed.

Cosmic Origins of Organic Molecules

As reported in Quanta Magazine, researchers have traced these molecules to interstellar clouds, comets and asteroids. These celestial objects serve as reservoirs for the compounds that constitute biological systems. Rosetta’s mission to comet 67P/Churyumov-Gerasimenko detected 44 distinct organic molecules, including glycine—a precursor to proteins—and dimethyl sulfide, a compound associated with biological activity on Earth. Such findings emphasise that life’s precursors existed in space long before planets formed.

Asteroids: Organic Richness

Asteroids also harbor an abundance of organic materials. Studies of samples returned by Japan’s Hayabusa2 and NASA’s Osiris-Rex missions revealed tens of thousands of organic compounds on asteroids Ryugu and Bennu. According to Philippe Schmitt-Kopplin of the Technical University of Munich, in a statement to Quanta Magazine, this demonstrates that “everything possible from which life could emerge” exists in space. Ryugu, for example, yielded 15 amino acids, crucial for life’s building blocks.

Molecular Evolution in Space

Organic molecules form through two primary pathways: combustion-like reactions in dying stars and on icy dust grains in molecular clouds. In the latter process, radiation and cosmic rays trigger the formation of molecules like methanol on these icy grains. Research demonstrated that glycine, the simplest amino acid, can form under such conditions, underscoring the molecular complexity present even before star systems emerged.

Organic Molecules in Planetary Birthplaces

Protoplanetary disks, the regions where stars and planets form, are rich with organic compounds. Observations from the Atacama Large Millimeter Array (ALMA) have identified methanol and other molecules in these disks. Computational models suggest these compounds survive the chaotic processes of planetary formation and continue to evolve chemically, enhancing the potential for life.

Clues for Astrobiology

The discovery of complex organics has profound implications for astrobiology. These molecules may serve as biosignatures, pointing to potential life beyond Earth. Upcoming missions like NASA’s Dragonfly to Saturn’s moon Titan aim to explore organic compounds in environments conducive to life, such as hydrocarbon lakes and thick atmospheres.

Ultimately, the universality of organic chemistry reinforces the idea that life’s building blocks are not unique to Earth, offering hope that life may exist elsewhere in the universe.

Continue Reading

Science

ISRO’s Spadex Mission to Demonstrate Satellite Docking on December 30

Published

on

By

ISRO's Spadex Mission to Demonstrate Satellite Docking on December 30

The Indian Space Research Organisation (ISRO) is set to close the year with the Spadex mission, scheduled for launch at 9:58 pm on December 30 from the Sriharikota spaceport. This mission involves two satellites, SDX01 (Chaser) and SDX02 (Target), aimed at demonstrating docking capabilities in orbit. By showcasing the alignment, connection, and power transfer between these satellites, the mission is expected to pave the way for future endeavours, including the Chandrayaan-4 and the proposed Bharatiya Antariksh Station.

Mission Details and Objectives

According to reports, the Polar Satellite Launch Vehicle (PSLV-C60) will place the 220-kg satellites into a 470-km circular orbit. The satellites will begin by separating to a distance of 10–20 km using relative velocity adjustments provided by the rocket. The Target satellite’s propulsion system will then maintain this distance to prevent further drift, marking the start of what is referred to as the “far rendezvous.” Gradual approaches by the Chaser satellite will follow, reducing the gap in calculated stages until docking is achieved.

Once docked, the satellites will demonstrate electrical power transfer and joint spacecraft control. Following separation, both satellites will operate their respective payloads, which are designed to function for two years.

Technological Highlights and Payloads

The Spadex mission is reported to employ innovative technologies, including docking mechanisms and advanced sensors, ensuring precision during the docking process. A relative orbit determination and propagation system, based on navigation constellations, is also part of this mission. The Chaser satellite features a high-resolution miniature surveillance camera, while the Target satellite carries a multispectral payload for monitoring vegetation and natural resources. A radiation monitor onboard the Target will collect space radiation data for analysis.

Additional Experiments

As per several reports, the rocket’s final stage will host experiments involving 24 payloads, including a robotic arm for debris capture and a study on seed germination and plant growth. The mission marks a significant leap in demonstrating small satellite docking, a challenging feat requiring precise control and coordination.

Continue Reading

Trending