Connect with us

Published

on

A detail of the pilot carbon dioxide (CO2) capture plant is pictured at Amager Bakke waste incinerator in Copenhagen on June 24, 2021.
IDA GULDBAEK ARENTSEN | AFP | Getty Images

LONDON — Carbon capture technology is often held up as a source of hope in reducing global greenhouse gas emissions, featuring prominently in countries’ climate plans as well as the net-zero strategies of some of the world’s largest oil and gas companies.

The topic is divisive, however, with climate researchers, campaigners and environmental advocacy groups arguing that carbon capture technology is not a solution.

The world is confronting a climate emergency, and policymakers and chief executives are under intensifying pressure to deliver on promises made as part of the landmark Paris Agreement. The accord, ratified by nearly 200 countries in 2015, is seen as critically important in averting the worst effects of climate change.

Carbon capture, utilization and storage — often shortened to carbon capture technology or CCUS — refers to a suite of technologies designed to capture carbon dioxide from high-emitting activities such as power generation or industrial facilities, that use either fossil fuels or biomass for fuel.

The captured carbon dioxide, which can also be captured directly from the atmosphere, is then compressed and transported via pipeline, ship, rail or truck to be used in a range of applications or permanently stored underground.

There are a number of reasons why carbon capture is a false climate solution. The first and most fundamental of those reasons is that it is not necessary.
Carroll Muffett
Chief executive at the Center for International Environmental Law

Proponents of these technologies believe they can play an important and diverse role in meeting global energy and climate goals.

Carroll Muffett, chief executive at the non-profit Center for International Environmental Law (CIEL), is not one of them. “There are a number of reasons why carbon capture is a false climate solution. The first and most fundamental of those reasons is that it is not necessary,” he told CNBC via telephone.

“If you look at the history of carbon capture and storage, what you see is nearly two decades of a solution in search of a cure.”

‘Unproven scalability’

Some CCS and CCUS facilities have been operating since the 1970s and 1980s when natural gas processing plants in south Texas began capturing carbon dioxide and supplying the emissions to local oil producers for enhanced oil recovery operations. The first one was set up in 1972.

It wasn’t until several years later that carbon capture technology would be studied for climate mitigation purposes. Now, there are 21 large-scale CCUS commercial projects in operation worldwide and plans for at least 40 new commercial facilities have been announced in recent years.

A report published by CIEL earlier this month concluded that these technologies are not only “ineffective, uneconomic and unsafe,” but they also prolong reliance on the fossil fuel industry and distract from a much-needed pivot to renewable alternatives.

Employees near the CO2 compressor site at the Hawiyah Natural Gas Liquids Recovery Plant, operated by Saudi Aramco, in Hawiyah, Saudi Arabia, on Monday, June 28, 2021. The Hawiyah Natural Gas Liquids Recovery Plant is designed to process 4.0 billion standard cubic feet per day of sweet gas as pilot project for Carbon Capture Technology (CCUS) to prove the possibility of capturing C02 and lowering emissions from such facilities.
Maya Siddiqui | Bloomberg | Getty Images

“The unproven scalability of CCS technologies and their prohibitive costs mean they cannot play any significant role in the rapid reduction of global emissions necessary to limit warming to 1.5°C,” the CIEL said, referring to a key aim of the Paris Agreement to limit a rise in the earth’s temperature to 1.5 degrees Celsius above pre-industrial levels.

“Despite the existence of the technology for decades and billions of dollars in government subsidies to date, deployment of CCS at scale still faces insurmountable challenges of feasibility, effectiveness, and expense,” the CIEL added.

Earlier this year, campaigners at Global Witness and Friends of the Earth Scotland commissioned climate scientists at the Tyndall Centre in Manchester, U.K. to assess the role fossil fuel-related CCS plays in the energy system.

The peer-reviewed study found that carbon capture and storage technologies still face numerous barriers to short-term deployment and, even if these could be overcome, the technology “would only start to deliver too late.” Researchers also found that it was incapable of operating with zero emissions, constituted a distraction from the rapid growth of renewable energy “and has a history of over-promising and under-delivering.”

In short, the study said reliance on CCS is “not a solution” to confronting the world’s climate challenge.

Carbon capture is ‘a rarity’ in Washington

Not everyone is convinced by these arguments, however. The International Energy Agency, an influential intergovernmental group, says that while carbon capture technology has not yet lived up to its promise, it can still offer “significant strategic value” in the transition to net zero.

“CCUS is a really important part of this portfolio of technologies that we consider,” Samantha McCulloch, head of CCUS technology at the IEA, told CNBC via video call.

The IEA has identified four key strategic roles for the technologies: Addressing emissions from energy infrastructure, tackling hard-to-abate emissions from heavy industry (cement, steel and chemicals, among others), natural gas-based hydrogen production and carbon removal.

For these four reasons, McCulloch said it would be fair to describe CCUS as a climate solution.

At present, CCUS facilities around the world have the capacity to capture more than 40 million metric tons of carbon dioxide each year. The IEA believes plans to build many more facilities could double the level of CO2 captured globally.

“It is contributing but not to a scale that we envisage will be needed in terms of a net-zero pathway,” McCulloch said. “The encouraging news, I think, is that there has been very significant momentum behind the technology in recent years and this is really reflecting that without CCUS it will be very difficult — if not impossible — to meet net-zero goals.”

Electricity pylons are seen in front of the cooling towers of the coal-fired power station of German energy giant RWE in Weisweiler, western Germany, on January 26, 2021.
INA FASSBENDER | AFP | Getty Images

Meanwhile, the American Petroleum Institute, the largest U.S. oil and gas trade lobby group, believes the future looks bright for carbon capture and utilization storage.

The group noted in a blog post on July 2 that CCUS was a rare example of something that is liked by “just about everyone” in Washington – Democrats, Republicans and Independents alike.

Where do we go from here?

“Frankly, tackling climate change is not the same as trying to bring the fossil fuel industry to its knees,” Bob Ward, policy and communications director at the Grantham Research Institute on Climate Change at the London School of Economics, told CNBC via telephone.

“If the fossil fuel companies can help us get to net zero then why wouldn’t we want them to do that? I think too many environmental groups have conflated their dislike of oil and gas companies with the challenge of tackling climate change.”

When asked why carbon capture and storage schemes should be in countries’ climate plans given the criticism they receive, Ward replied: “Because if we are going to get to net zero by 2050, we have to throw every technology at this problem … People who argue that you can start ruling out technologies because you don’t like them are those who, I think, haven’t understood the scale of the challenge we face.”

The CIEL’s Muffett rejected this suggestion, saying proponents of carbon capture technologies are increasingly reliant on this kind of “all of the above” argument. “The answer to it is surprisingly easy: It is that we have a decade to cut global emissions in half and we have just a few decades to eliminate them entirely,” Muffett said.

“If on any reasonable examination of CCS, it costs massive amounts of money but doesn’t actually reduce emissions in any meaningful way, and further entrenches fossil fuel infrastructure, the question is: In what way is that contributing to the solution as opposed to diverting time and energy and resources away from the solutions that will work?”

Continue Reading

Environment

New ‘world’s lightest, most efficient’ e-bike motor lands on another model

Published

on

By

New 'world's lightest, most efficient' e-bike motor lands on another model

Last week, we reported that the e-bike world had a new motor claiming to be the lightest and most efficient. Now, we’re already seeing TQ’s new TQHPR40 motor proliferate on more road and gravel e-bikes, including the recently announced E-ASTR from Ridely.

Ridley’s new E‑ASTR brings lightweight electric assistance to its already impressive ASTR gravel platform, powered by the cutting-edge TQ HPR40 mid-drive system. Unlike bulkier e‑bike setups, this system adds just 1.17 kg (2.6 lb) at the crank and a discreet 1.46 kg (3.2 lb) and 290 Wh battery hidden within the downtube, keeping the frame’s silhouette nearly identical to the non-electric version of the same bike. According to BikeRumor, riders looking closely might spot only a slightly fatter downtube, internal cable routing, and a handlebar-end LED indicator, giving visual clues without shouting “electric bike.”

What the E‑ASTR gives up in sheer power from the petite motor, it gains in ride feel. The HPR40 is said to deliver a modest 40 Nm of torque and up to 200W of assist, or enough to smooth out climbs or offer a tailwind on gravel without overpowering the rider. With support cut off at 25 km/h (15.5 mph), pedal responsiveness remains natural and fluid. Combined with the ASTR’s race-inspired geometry, the bike looks to offer sharp handling and comfort suited to the rigors of modern gravel routes.

Ridley is currently offering the E‑ASTR in three spec levels: a value SRAM Apex XPLR AXS build €7,199 (or approximately US $8,500), a mid-range SRAM Rival XPLR AXS 1×13 version for €8,199 (or approximately US $9,700), and a top-tier Shimano GRX 2×12 Di2 model for €8,899 (or approximately US $10,500). Each features high-end drivetrains, integrated cockpit options, carbon wheels, and industry-standard gravel brakes and tires. With its race-ready frame and stealthy, lightweight e‑assistance, the E‑ASTR is positioning itself as a high-performance gravel machine that stays true to its roots, delivering help when needed, without overshadowing the rider.

Advertisement – scroll for more content

Wait, you’re telling me that’s an electric bike?!

Ultra-lightweight motors like the TQHPR40 are quietly reshaping the e-bike industry by making electric assistance almost invisible, both in looks and in feel. As systems shrink and integrate more seamlessly into traditional bike frames, they’re opening the door to new categories of performance-oriented e-bikes that preserve the ride dynamics of analog bikes while offering just enough support when it counts.

For riders who value a natural pedaling experience but still want a little help on climbs or longer days, and especially for aging riders who want to maintain their riding habits despite father time taking an impact on joints and muscles, these minimalist systems are proving that you don’t need a bulky battery or a massive motor to get the benefits of going electric. The result is a wave of stealthy, high-performance e-bikes that are less about replacing effort and more about enhancing the ride.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla, Trump alliance falls apart – but there’s BIG news for electric semi fleets

Published

on

By

Tesla, Trump alliance falls apart – but there's BIG news for electric semi fleets

After a month off trying to wrap our heads around all the chaos surrounding EVs, solar, and everything else in Washington, we’re back with the biggest EV news stories of the day from Tesla, Ford, Volvo, and everyone else on today’s hiatus-busting episode of Quick Charge!

It just gets worse and worse for the Tesla true believers – especially those willing to put their money where Elon’s mouth is! One believer is set to lose nearly $50,000 betting on Tesla’s ability to deliver a Robotaxi service by the end of June (didn’t happen), and the controversial CEO’s most recent spat with President Trump had TSLA down nearly 5% in pre-morning trading.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Advertisement – scroll for more content

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai is about to reveal a new EV and it could be the affordable IONIQ 2

Published

on

By

Hyundai is about to reveal a new EV and it could be the affordable IONIQ 2

Hyundai is getting ready to shake things up. A new electric crossover SUV, likely the Hyundai IONIQ 2, is set to debut in the coming months. It will sit below the Kona Electric as Hyundai expands its entry-level EV lineup.

Is Hyundai launching the IONIQ 2 in 2026?

After launching the Inster late last year, Hyundai is already preparing to introduce a new entry-level EV in Europe.

Xavier Martinet, President and CEO of Hyundai Europe, confirmed that the new EV will be revealed “in the next few months.” It will be built in Europe and scheduled to go on sale in mid-2026.

Hyundai’s new electric crossover is expected to be a twin to the Kia EV2, which will likely arrive just ahead of it next year.

Advertisement – scroll for more content

It will be underpinned by the same E-GMP platform, which powers all IONIQ and Kia EV models (EV3, EV4, EV5, EV6, and EV9).

Like the Kia EV3, it will likely be available with either a 58.3 kWh or 81.4 kWh battery pack option. The former provides a WLTP range of 267 miles while the latter is rated with up to 372 miles. All trims are powered by a single electric motor at the front, producing 201 hp and 209 lb-ft of torque.

Kia-EV2
Kia EV2 Concept (Source: Kia)

Although it may share the same underpinnings as the EV2, Hyundai’s new entry-level EV will feature an advanced new software and infotainment system.

According to Autocar, the interior will represent a “step change” in terms of usability and features. The new system enables new functions, such as ambient lighting and sounds that adjust depending on the drive mode.

Hyundai-IONIQ-2-EV
Hyundai E&E tech platform powered by Pleos (Source: Hyundai)

It’s expected to showcase Hyundai’s powerful new Pleos software and infotainment system. As an end-to-end software platform, Pleos connects everything from the infotainment system (Pleos Connect) to the Vehicle Operating System (OS) and the cloud.

Pleos is set to power Hyundai’s upcoming software-defined vehicles (SDVs) with new features like autonomous driving and real-time data analysis.

Hyundai-new-Pleos-OS
Hyundai’s next-gen infotainment system powered by Pleos (Source: Hyundai)

As an Android-based system, Pleos Connect features a “smartphone-like UI” with new functions including multi-window viewing and an AI voice assistant.

The new electric crossover is expected to start at around €30,000 ($35,400), or slightly less than the Kia EV3, priced from €35,990 ($42,500). It will sit between the Inster and Kona Electric in Hyundai’s lineup.

Hyundai said that it would launch the first EV with its next-gen infotainment system in Q2 2026. Will it be the IONIQ 2? Hyundai is expected to unveil the new entry-level EV at IAA Mobility in September. Stay tuned for more info. We’ll keep you updated with the latest.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending