Connect with us

Published

on

The International Space Station (ISS) was thrown briefly out of control on Thursday when jet thrusters of a newly arrived Russian research module inadvertently fired a few hours after it was docked to the orbiting outpost, NASA officials said.

The seven crew members aboard – two Russian cosmonauts, three NASA astronauts, a Japanese astronaut, and a European space agency astronaut from France – were never in any immediate danger, according to NASA and Russian state-owned news agency RIA.

But the malfunction prompted NASA to postpone until at least August 3 its planned launch of Boeing’s new CST-100 Starliner capsule on a highly anticipated uncrewed test flight to the space station. The Starliner had been set to blast off atop an Atlas V rocket on Friday from the Kennedy Space Center in Florida.

Thursday’s mishap began about three hours after the multipurpose Nauka module had latched onto the space station, as mission controllers in Moscow were performing some post-docking “reconfiguration” procedures, according to NASA.

The module’s jets inexplicably restarted, causing the entire station to pitch out of its normal flight position some 250 miles above the Earth, leading the mission’s flight director to declare a “spacecraft emergency,” US space agency officials said.

An unexpected drift in the station’s orientation was first detected by automated ground sensors, followed 15 minutes later by a “loss of attitude control” that lasted a little over 45 minutes, according to Joel Montalbano, manager of NASA’s space station programme.

‘Tug-of-war’

Flight teams on the ground managed to restore the space station’s orientation by activating thrusters on another module of the orbiting platform, NASA officials said.

In its broadcast coverage of the incident, RIA cited NASA specialists at the Johnson Space Center in Houston, Texas, as describing the struggle to regain control of the space station as a “tug of war” between the two modules.

At the height of the incident, the station was pitching out of alignment at the rate of about a half a degree per second, Montalbano said during a NASA conference call with reporters.

The Nauka engines were ultimately switched off, the space station was stabilised and its orientation was restored to where it had begun, NASA said.

Communication with the crew was lost for several minutes twice during the disruption, but “there was no immediate danger at any time to the crew,” Montalbano said. He said “the crew really didn’t feel any movement.”

Had the situation become so dangerous as to require evacuation of personnel, the crew could have escaped in a SpaceX crew capsule still parked at the outpost and designed to serve as a “lifeboat” if necessary, said Steve Stich, manager of NASA’s commercial crew programme.

What caused the malfunction of the thrusters on the Nauka module, delivered by the Russian space agency Roscosmos, has yet to be determined, NASA officials said.

Montalbano said there was no immediate sign of any damage to the space station. The flight correction maneuvres used up more propellant reserves than desired, “but nothing I would worry about,” he said.

After its launch last week from Kazakhstan’s Baikonur Cosmodrome, the module experienced a series of glitches that raised concern about whether the docking procedure would go smoothly.

Roscosmos attributed Thursday’s post-docking issue to Nauka’s engines having to work with residual fuel in the craft, TASS news agency reported.

“The process of transferring the Nauka module from flight mode to ‘docked with ISS’ mode is underway. Work is being carried out on the remaining fuel in the module,” Roscosmos was cited by TASS as saying.

The Nauka module is designed to serve as a research lab, storage unit, and airlock that will upgrade Russia’s capabilities aboard the ISS.

A live broadcast showed the module, named after the Russian word for “science,” docking with the space station a few minutes later than scheduled.

“According to telemetry data and reports from the ISS crew, the onboard systems of the station and the Nauka module are operating normally,” Roscosmos said in a statement.

“There is contact!!!” Dmitry Rogozin, the head of Roscosmos, wrote on Twitter moments after the docking.

© Thomson Reuters 2021


Continue Reading

Science

Solar System’s Journey Through Orion Complex May Have Altered Earth’s Climate

Published

on

By

Solar System’s Journey Through Orion Complex May Have Altered Earth’s Climate

The movement of the solar system through the Orion star-forming complex around 14 million years ago may have influenced Earth’s climate, according to scientists. This dense region of space, part of the Radcliffe Wave galactic structure, could have compressed the heliosphere—the protective shield surrounding the solar system—while increasing interstellar dust reaching Earth. Researchers suggest that this influx of cosmic dust might have left traces in geological records, potentially linking galactic activity to past climate changes.

Solar System’s Passage Through the Radcliffe Wave

According to the study published in Astronomy & Astrophysics, an international research team led by the University of Vienna used data from the European Space Agency’s Gaia mission and spectroscopic observations to determine that the solar system moved through the Radcliffe Wave in the Orion constellation between 18.2 and 11.5 million years ago. The most probable period was estimated between 14.8 and 12.4 million years ago. João Alves, Professor of Astrophysics at the University of Vienna and co-author of the study, stated to Phys.org, that this research builds on prior findings regarding the Radcliffe Wave. This structure, made up of interconnected star-forming regions, includes the Orion complex, which the sun is believed to have passed through.

Potential Impact on Earth’s Climate

The study suggests that the increased presence of interstellar dust may have influenced Earth’s atmosphere. Efrem Maconi, lead author and doctoral student at the University of Vienna, said that this dust might have contained traces of radioactive elements from supernovae, which could be detected in geological records using advanced technology in the future.

The solar system’s passage aligns with the Middle Miocene Climate Transition, a period marked by a shift from a warmer, variable climate to a cooler one, leading to the development of Antarctic ice sheets. Scientists highlight that while interstellar dust could have played a role, the dominant factor in this climate change was a long-term decrease in atmospheric carbon dioxide levels.

Not Comparable to Human-Induced Climate Change

Maconi noted that while interstellar dust could have contributed to past climate shifts, the amount required for significant change would need to be much greater than current data suggests. The Middle Miocene Climate Transition unfolded over hundreds of thousands of years, unlike modern climate change, which is occurring rapidly due to human activities

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

Ancient DNA Sheds Light on the Diverse Genetic Origins of the European Huns

Published

on

By

Ancient DNA Sheds Light on the Diverse Genetic Origins of the European Huns

The origins of the Huns, a nomadic group that played a crucial role in the decline of the Roman Empire, have long remained uncertain. Recent DNA analysis of ancient skeletal remains has provided fresh insights into their ancestry, revealing a diverse genetic makeup rather than a singular point of origin. According to reports, researchers examined remains from individuals buried between the fourth and sixth centuries and found genetic links spanning Central Asia and Eastern Europe. These findings indicate that the Huns were not a homogenous group but a population shaped by centuries of migration and cultural interactions.

Genetic Analysis Reveals Diverse Ancestry

According to the study published in PNAS, a team led by Guido Gnecchi-Ruscone, an archaeogeneticist at the Max Planck Institute for Evolutionary Anthropology, analysed the genomes of 370 individuals. The research aimed to trace connections between European Huns and earlier nomadic groups, including the Xiongnu, whose empire thrived in Mongolia between 200 B.C. and A.D. 100. While certain Hun individuals exhibited direct genetic links to the Xiongnu elite, most carried varying degrees of Northeast Asian ancestry, underscoring a complex history of intermingling.

Connections Across the Eurasian Steppe

Using a technique called identity by descent (IBD) segment sharing, the researchers identified genetic ties across multiple regions over several centuries. Their findings suggested that trans-Eurasian relationships were maintained across generations. While high-status Xiongnu burials in Mongolia showed direct descendants among the European Huns, the study concluded that no large-scale migration of Xiongnu populations into Europe took place.

Insights from an Elite Hun Burial

A burial site in Pusztataskony, Hungary, yielded the remains of a Hun woman with an elongated skull, buried alongside gold earrings. Gnecchi-Ruscone told Live Science that this individual carried genetic markers linking her to the Xiongnu elite, suggesting that skull modification, a notable cultural practice, may have been passed down through generations. The study reinforces the view that the European Huns were a culturally and genetically diverse group shaped by centuries of movement and integration rather than a single migratory event.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


NASA’s IM-2 Mission Brings Ice Mining, Mobile Robots, and More on Moon



Nothing Phone 3a Design Revealed Ahead of March 4 Launch: Expected Specifications

Related Stories

Continue Reading

Science

NASA’s IM-2 Mission Brings Ice Mining, Mobile Robots, and More on Moon

Published

on

By

NASA’s IM-2 Mission Brings Ice Mining, Mobile Robots, and More on Moon

NASA is preparing to send advanced technologies to the Moon through Intuitive Machines’ second lunar delivery under the Commercial Lunar Payload Services (CLPS) initiative. The mission, part of the Artemis programme, aims to establish a sustainable human presence on the Moon. A range of scientific instruments and communication systems will be tested on the lunar surface. The launch window for Intuitive Machines’ second CLPS mission, IM-2, is scheduled to open on 26 February from Launch Complex 39A at NASA’s Kennedy Space Center. The Nova-C class lander will carry key technology payloads, including a drill, mass spectrometer, a cellular network, and a drone for terrain exploration.

Lunar South Pole Exploration

As reported, the landing site for IM-2 has been selected based on data from NASA’s Lunar Reconnaissance Orbiter. Located in the South Pole region, the site offers a relatively flat terrain, meeting the criteria for a safe landing. The area is of particular interest due to its potential for in-situ resource utilisation, which could support future lunar missions.

Demonstration of New Technologies

According to NASA’s Space Technology Mission Directorate, the Polar Resources Ice Mining Experiment-1 (PRIME-1) will be tested as part of the mission. PRIME-1 includes a drill and a mass spectrometer designed to search for water ice and other resources beneath the lunar surface. Data gathered from this experiment will assist in future space exploration efforts by providing insight into potential resource extraction for fuel and oxygen production.

Mobile Robotics on the Moon

Two technology demonstrations will be deployed near the lander under NASA’s Tipping Point initiative. Intuitive Machines has developed a small drone, named Grace, which will conduct high-resolution surveys of the lunar terrain. The drone is designed to navigate steep inclines, craters, and other challenging obstacles, helping scientists study permanently shadowed regions that cannot be accessed by traditional rovers.

Lunar Surface Communication System

A communication system developed by Nokia Bell Labs will be tested to establish a lunar cellular network. The system will enable communication between the lander, a Lunar Outpost rover, and the Grace drone. It will be the first demonstration of cellular-based connectivity on the Moon, with potential applications for future crewed missions and robotic exploration.

Collaboration for Lunar Exploration

NASA is working alongside several U.S. companies to deliver scientific and technological advancements to the lunar surface. The Space Technology Mission Directorate has integrated multiple research and development efforts to support future Moon missions. The combination of CLPS and Tipping Point initiatives aims to advance exploration capabilities, benefiting NASA and the broader space industry.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Trending