Connect with us

Published

on

The International Space Station (ISS) was thrown briefly out of control on Thursday when jet thrusters of a newly arrived Russian research module inadvertently fired a few hours after it was docked to the orbiting outpost, NASA officials said.

The seven crew members aboard – two Russian cosmonauts, three NASA astronauts, a Japanese astronaut, and a European space agency astronaut from France – were never in any immediate danger, according to NASA and Russian state-owned news agency RIA.

But the malfunction prompted NASA to postpone until at least August 3 its planned launch of Boeing’s new CST-100 Starliner capsule on a highly anticipated uncrewed test flight to the space station. The Starliner had been set to blast off atop an Atlas V rocket on Friday from the Kennedy Space Center in Florida.

Thursday’s mishap began about three hours after the multipurpose Nauka module had latched onto the space station, as mission controllers in Moscow were performing some post-docking “reconfiguration” procedures, according to NASA.

The module’s jets inexplicably restarted, causing the entire station to pitch out of its normal flight position some 250 miles above the Earth, leading the mission’s flight director to declare a “spacecraft emergency,” US space agency officials said.

An unexpected drift in the station’s orientation was first detected by automated ground sensors, followed 15 minutes later by a “loss of attitude control” that lasted a little over 45 minutes, according to Joel Montalbano, manager of NASA’s space station programme.

‘Tug-of-war’

Flight teams on the ground managed to restore the space station’s orientation by activating thrusters on another module of the orbiting platform, NASA officials said.

In its broadcast coverage of the incident, RIA cited NASA specialists at the Johnson Space Center in Houston, Texas, as describing the struggle to regain control of the space station as a “tug of war” between the two modules.

At the height of the incident, the station was pitching out of alignment at the rate of about a half a degree per second, Montalbano said during a NASA conference call with reporters.

The Nauka engines were ultimately switched off, the space station was stabilised and its orientation was restored to where it had begun, NASA said.

Communication with the crew was lost for several minutes twice during the disruption, but “there was no immediate danger at any time to the crew,” Montalbano said. He said “the crew really didn’t feel any movement.”

Had the situation become so dangerous as to require evacuation of personnel, the crew could have escaped in a SpaceX crew capsule still parked at the outpost and designed to serve as a “lifeboat” if necessary, said Steve Stich, manager of NASA’s commercial crew programme.

What caused the malfunction of the thrusters on the Nauka module, delivered by the Russian space agency Roscosmos, has yet to be determined, NASA officials said.

Montalbano said there was no immediate sign of any damage to the space station. The flight correction maneuvres used up more propellant reserves than desired, “but nothing I would worry about,” he said.

After its launch last week from Kazakhstan’s Baikonur Cosmodrome, the module experienced a series of glitches that raised concern about whether the docking procedure would go smoothly.

Roscosmos attributed Thursday’s post-docking issue to Nauka’s engines having to work with residual fuel in the craft, TASS news agency reported.

“The process of transferring the Nauka module from flight mode to ‘docked with ISS’ mode is underway. Work is being carried out on the remaining fuel in the module,” Roscosmos was cited by TASS as saying.

The Nauka module is designed to serve as a research lab, storage unit, and airlock that will upgrade Russia’s capabilities aboard the ISS.

A live broadcast showed the module, named after the Russian word for “science,” docking with the space station a few minutes later than scheduled.

“According to telemetry data and reports from the ISS crew, the onboard systems of the station and the Nauka module are operating normally,” Roscosmos said in a statement.

“There is contact!!!” Dmitry Rogozin, the head of Roscosmos, wrote on Twitter moments after the docking.

© Thomson Reuters 2021


Continue Reading

Science

Scientists Chase Falling Satellite to Study Atmospheric Pollution from Spacecraft Reentries

Published

on

By

Scientists Chase Falling Satellite to Study Atmospheric Pollution from Spacecraft Reentries

Scientists take advantage of the spectacular airborne chase of a falling satellite to gather rare data on atmospheric pollution from burnt-up spacecraft. In September 2024, a group of European researchers hopped on an aeroplane outfitted with 26 cameras and flew into the night sky to watch the satellite Cluster Salsa make its flaming return to Earth over the Pacific Ocean. The mission, which was launched from Easter Island, sought chemical byproducts that would have been released during that short, meteor-like reentry event. Despite the glare of bright natural light that impeded a clear view, the researchers captured for the first time images of the satellite fracturing and chemicals being released as it fell to Earth.

Satellite Reentries May Impact Ozone and Climate, Scientists Warn

As per the report presented at the European Conference on Space Debris, reentry produced lithium, potassium, and aluminum emissions — elements with the potential to impact the ozone layer and Earth’s climate. Stefan Löhle of the University of Stuttgart mentioned that the satellite’s weak trail indicated that pieces splintered off and burned with less ferocity than predicted. The satellite started to disintegrate at about 80 kilometres above sea level, and the observations stopped at a height of around 40 kilometres due to the visual extinction.

Such events are increasingly important to monitor as satellite reentries grow in frequency. Although spacecraft such as those in SpaceX’s Starlink fleet are made to burn up completely, surviving debris and dust particles could still affect the upper atmosphere, scientists caution. The aluminum oxide from the melting satellites, for example, could be involved in long-term atmospheric effects, such as changes in thermal balance and ozone destruction.

This mission marks only the fifth time a spacecraft reentry has been observed from the air. Researchers hope to align their collected data with computer models to estimate how much mass satellites lose during disintegration and how that mass interacts chemically with the atmosphere. The data also suggest that some titanium components from the 550-kilogram Cluster Salsa may have survived reentry and landed in the Pacific Ocean.

As more satellites return to Earth, researchers plan to repeat the chase with Salsa’s sister satellites—Rumba, Tango, and Samba—expected to re-enter by 2026. Despite daytime limitations affecting some measurement techniques, these missions may help clarify how spacecraft pollution influences Earth’s upper atmosphere and climate.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kaalamega Karigindhi OTT Release Date: When and Where to Watch Telugu Romantic Movie Online?



Kenya Orders Sam Altman’s World to Delete Citizens’ Biometric Data Within 7 Days

Continue Reading

Science

NASA Stacks Artemis 2 Second Stage While the Future of SLS Remains Uncertain

Published

on

By

NASA Stacks Artemis 2 Second Stage While the Future of SLS Remains Uncertain

NASA’s Artemis 2 mission has reached a major milestone as the second stage that powers the Artemis 2 rocket, the Interim Cryogenic Propulsion Stage (ICPS), has been stacked. Kennedy Space Centre in Florida’s technicians mounted the ICPS on top of the SLS rocket inside the Vehicle Assembly Building on May 1. Driven by its upper stage, NASA’s Orion spacecraft and four-person crew—three NASA astronauts and one Canadian—out of Earth orbit will travel a free-return path around the moon, therefore allowing NASA’s return to deep space exploration.

NASA Advances Artemis 2 Moon Mission as Future of SLS and Orion Faces Uncertainty

As per NASA’s announcement, the ICPS arrived at the VAB last month and was hoisted into position inside the rocket stage adapter. The stage is critical for completing the crew’s journey past low Earth orbit during the 10-day Artemis 2 mission. Images shared by NASA show the second stage being lowered into place, while the Orion spacecraft and service module, delivered this week by Lockheed Martin, await integration. Exploration Ground Systems will process the Orion module before joining the rest of the launch vehicle.

Artemis 2 follows Artemis 1, which launched uncrewed in 2022 and revealed issues with Orion’s heat shield that delayed future missions. The Artemis 2 crew will fly a lunar pass rather than enter lunar orbit. The success of the mission will be vital in opening the path for Artemis 3, currently set for 2027, whereupon humans would land on the moon using a SpaceX Starship lander.

Even with continuous development, ambiguity surrounds the long-term fate of the program. A 2026 budget proposal released May 2 suggests ending the SLS and Orion programs after Artemis 3. If enacted, the mission currently under assembly may be among the final uses of the massive launch vehicle, designed to carry humans beyond low Earth orbit.

Artemis 2 is still relentlessly heading towards launch readiness. Though programming objectives are always changing, NASA’s efforts to prepare the SLS and Orion spacecraft highlight a more general aim of maintaining a continuous lunar presence—a step towards eventual Mars exploration.

Continue Reading

Science

What Happens in Your Brain When You Read? New Study Maps the Reading Mind

Published

on

By

What Happens in Your Brain When You Read? New Study Maps the Reading Mind

Scientists concluded in a recent research published in April 2025 in Neuroscience & Biobehavioral Reviews provides an in-depth look into how our brain understands the written language. The study has been conducted by researchers at the Max Planck Institute for Human Cognitive and Brain Sciences. The findings of this research have been derived from 163 neuroimaging studies to understand the neural mechanisms behind reading in depth. This comprehensive analysis has shown how different areas of the brain work in synchronisation, mainly the left-hemispheric regions and the cerebellum, to process different written content.

How the Brain Handles Letters to Full Texts

Sabrina Turker, Philip Kuhnke, Gesa Hartwigsen and Beatrice Fumagalli, the researchers involved in the study, found that specific brain areas get activated based on the type of reading. Researchers found that the left occipital cortex’s single cluster was activated after reading letters, whereas words, sentences and paragraphs activated the left hemisphere. While reading pseudo words, unique areas were involved, which has shown the inability of the brain to find the difference between the language that is known and the unknown.

Silent vs. Aloud Reading: What’s the Difference?

A major discovery in this research is the difference between overt (aloud reading) and covert (silent reading) brain activity. Aloud reading triggers the regions linked to sound and movement, whereas silent reading involves more complex multiple-demand areas. According to the researchers, silent reading needs more mental resources than aloud reading.

Explicit vs. Implicit Reading Tasks

The study also revealed the exploration of how the brain responds to explicit reading, i.e. Silent word reading and lexical decision tasks. The former one involves stronger activation in the regions, just like the cerebellar cortices and left orbitofrontal, whereas the implicit reading activated both sides of the inferior frontal, together with insular regions.

Why This Matters

The insights from the study can help support individuals suffering from reading challenges. After knowing how silent reading reacts differently to the brain, educators and doctors can better customise the medical practices for treating disorders such as dyslexia.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


OnePlus 13s Design Fully Revealed in New Teaser; Confirmed to Debut in Two Colour Options



Samsung Galaxy Z Fold 7, Galaxy Z Flip 7 Battery Capacities Tipped via Certification Site

Continue Reading

Trending