Connect with us

Published

on

The International Space Station (ISS) was thrown briefly out of control on Thursday when jet thrusters of a newly arrived Russian research module inadvertently fired a few hours after it was docked to the orbiting outpost, NASA officials said.

The seven crew members aboard – two Russian cosmonauts, three NASA astronauts, a Japanese astronaut, and a European space agency astronaut from France – were never in any immediate danger, according to NASA and Russian state-owned news agency RIA.

But the malfunction prompted NASA to postpone until at least August 3 its planned launch of Boeing’s new CST-100 Starliner capsule on a highly anticipated uncrewed test flight to the space station. The Starliner had been set to blast off atop an Atlas V rocket on Friday from the Kennedy Space Center in Florida.

Thursday’s mishap began about three hours after the multipurpose Nauka module had latched onto the space station, as mission controllers in Moscow were performing some post-docking “reconfiguration” procedures, according to NASA.

The module’s jets inexplicably restarted, causing the entire station to pitch out of its normal flight position some 250 miles above the Earth, leading the mission’s flight director to declare a “spacecraft emergency,” US space agency officials said.

An unexpected drift in the station’s orientation was first detected by automated ground sensors, followed 15 minutes later by a “loss of attitude control” that lasted a little over 45 minutes, according to Joel Montalbano, manager of NASA’s space station programme.

‘Tug-of-war’

Flight teams on the ground managed to restore the space station’s orientation by activating thrusters on another module of the orbiting platform, NASA officials said.

In its broadcast coverage of the incident, RIA cited NASA specialists at the Johnson Space Center in Houston, Texas, as describing the struggle to regain control of the space station as a “tug of war” between the two modules.

At the height of the incident, the station was pitching out of alignment at the rate of about a half a degree per second, Montalbano said during a NASA conference call with reporters.

The Nauka engines were ultimately switched off, the space station was stabilised and its orientation was restored to where it had begun, NASA said.

Communication with the crew was lost for several minutes twice during the disruption, but “there was no immediate danger at any time to the crew,” Montalbano said. He said “the crew really didn’t feel any movement.”

Had the situation become so dangerous as to require evacuation of personnel, the crew could have escaped in a SpaceX crew capsule still parked at the outpost and designed to serve as a “lifeboat” if necessary, said Steve Stich, manager of NASA’s commercial crew programme.

What caused the malfunction of the thrusters on the Nauka module, delivered by the Russian space agency Roscosmos, has yet to be determined, NASA officials said.

Montalbano said there was no immediate sign of any damage to the space station. The flight correction maneuvres used up more propellant reserves than desired, “but nothing I would worry about,” he said.

After its launch last week from Kazakhstan’s Baikonur Cosmodrome, the module experienced a series of glitches that raised concern about whether the docking procedure would go smoothly.

Roscosmos attributed Thursday’s post-docking issue to Nauka’s engines having to work with residual fuel in the craft, TASS news agency reported.

“The process of transferring the Nauka module from flight mode to ‘docked with ISS’ mode is underway. Work is being carried out on the remaining fuel in the module,” Roscosmos was cited by TASS as saying.

The Nauka module is designed to serve as a research lab, storage unit, and airlock that will upgrade Russia’s capabilities aboard the ISS.

A live broadcast showed the module, named after the Russian word for “science,” docking with the space station a few minutes later than scheduled.

“According to telemetry data and reports from the ISS crew, the onboard systems of the station and the Nauka module are operating normally,” Roscosmos said in a statement.

“There is contact!!!” Dmitry Rogozin, the head of Roscosmos, wrote on Twitter moments after the docking.

© Thomson Reuters 2021


Continue Reading

Science

SpaceX Rocket Launches 28 Starlink Satellites, Makes 26th Booster Reuse

Published

on

By

SpaceX Rocket Launches 28 Starlink Satellites, Makes 26th Booster Reuse

SpaceX launched its next batch of Starlink V2 Mini satellites on a Falcon 9 rocket launch from Cape Canaveral Space Force Station shortly before midnight on Tuesday. The Starlink 10-29 mission added another 28 satellites into the low Earth orbit megaconstellation. A SpaceX Falcon 9 rocket lifted off at 11:37 p.m. EDT (0337 GMT on July 30) from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station in Florida.

After a nine minute climb into space, the 28 Starlink broadband internet satellites (group 10-29) were on track to be deployed into their intended orbit. After payload deployment, the Falcon 9 first stage separated and successfully landed on the ocean-going droneship “Just Read the Instructions”, positioned in the Atlantic Ocean.

This mission notably marked the 26th flight for the Falcon 9’s first stage, booster B1069, which has been a part of missions include diverse payloads such as CRS-24, Eutelsat HOTBIRD 13F, OneWeb 1, SES-18 and SES-19, alongside 22 other Starlink deployments.

According to satellite tracker Jonathan McDowell, the Starlink constellation now includes over 8,050 active satellites (out of more than 9,300 launched since 2018). The growing fleet is intended to provide high-speed internet worldwide, and each launch like this one adds capacity and coverage. The mission also highlights SpaceX’s extraordinary launch cadence and technical progress.

It was the company’s 96th launch of 2025, reflecting a packed schedule and intense operational tempo. Two more missions were scheduled later that week — another Starlink launch from California and NASA’s Crew-11 flight to the International Space Station. The repeated reuse of boosters (as evidenced by B1069’s 26 flights) is central to lowering costs and sustaining this ambitious cadence.

Continue Reading

Science

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Published

on

By

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Hundreds waited at the ready outside the Smithsonian’s National Air and Space Museum on Monday (July 28), when “the doors opened for access to five featured and newly renovated galleries that capture the history, contemporary status, and futuristic vision of aviation and space exploration. These refurbished spaces showcase a mix of historic and high-tech artifacts such as John Glenn’s “Friendship 7” capsule, pieces of a SpaceX Falcon 9 rocket, and a 3D-printed Mars habitat. Visitors were among the first to experience a sweeping display of innovation, housed within the museum’s revitalised main building on the National Mall in Washington, D.C.

Smithsonian’s $900M Overhaul Brings Futuristic Space Exhibits and Aviation History to Life

As per a Smithsonian statement, the reimagined exhibits are part of a $900 million full-building transformation launched in 2018, scheduled for completion by July 2026—the museum’s 50th anniversary. This phase marks the second group of reopened galleries since the start of 2022. After a three-year closure, the north entrance opened for the first time, leading visitors through a newly wing-shaped vestibule and into “Boeing Milestones of Flight Hall”, now with improved lighting, digital screens, and iconic artefacts.

Next to it, a new “Futures in Space” gallery showcases domestic exhibitions from private space companies like SpaceX, Blue Origin, Virgin Galactic, and Axiom Space. Rather than a chronological or program-based layout, the gallery explores philosophical and practical questions about space: Who decides who goes? Why do we venture out? What will we do once we arrive? The immersive layout blends historical items, contemporary designs, and even pop culture references.

The museum has reopened galleries such as “Barron Hilton Pioneers of Flight”, “World War I: The Birth of Military Aviation”, and “Allan and Shelley Holt Innovations Gallery”, and the upgraded Lockheed Martin IMAX Theatre, praised as educational and inspirational.

Despite free entry, the Smithsonian Museum reopened to more than 6,000 guests, who must pick up timed-entry passes in order to better manage crowd flow.

Continue Reading

Science

NASA’s Solar Observatory Sees Two Eclipses in One Day

Published

on

By

NASA’s Solar Observatory Sees Two Eclipses in One Day

NASA’s Solar Dynamics Observatory (SDO) has witnessed and recorded an unprecedented phenomenon of two solar eclipses in one day on July 25, 2025. These two eclipses took place only hours apart that day, and were photographed by SDO instruments pointed up and away from the Sun in geosynchronous orbit. First, around 2:45 UTC, the Moon passed between SDO and the Sun. Then, starting at about 6:30 UTC, Earth itself eclipsed the Sun from SDO’s point of view, with the Sun disappearing behind our planet shortly before 8:00 UTC. Since launching in 2010, SDO has continuously monitored the Sun’s activity, from solar flares to magnetic fields, helping forecasters predict space weather.

Moon Transit

According to NASA, SDO orbits Earth in a high geosynchronous orbit, so it has an almost constant view of the Sun. On July 25, this vantage point captured a partial solar eclipse as the Moon passed between the spacecraft and the Sun. NASA’s mission team had predicted this “lunar transit” would cover about 62% of the solar disk. Indeed, the Moon’s silhouette moved slowly across the Sun (around 2:45–3:35 UTC), blocking roughly two-thirds of the bright disk at maximum. The observatory’s ultraviolet telescope (AIA) recorded the event, revealing the Sun’s lower atmosphere and coronal loops around the sharply defined lunar edge. This transit was the deepest lunar eclipse SDO saw in 2025.

Earth’s Eclipse from Space

Hours later, on the same day, Earth itself passed between SDO and the Sun. Beginning around 6:30 UTC on July 25, our planet fully blocked the observatory’s view of the solar disk. This occurred during SDO’s regular eclipse season (a roughly three-week period twice each year when Earth’s orbit crosses the satellite’s line of sight). The total eclipse lasted until shortly before 8:00 UTC. In SDO’s images, Earth’s shadow has a fuzzy edge because our atmosphere scatters sunlight, in contrast to the Moon’s crisp eclipse.

Continue Reading

Trending